Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Cell Biol ; 216(12): 3991-4005, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29042409

RESUMEN

Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability.


Asunto(s)
Síndrome de Bloom/genética , ADN/química , Inestabilidad Genómica , RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patología , Línea Celular Transformada , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Fibroblastos/metabolismo , Fibroblastos/patología , Dosificación de Gen , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica , ARN/genética , ARN/metabolismo , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Genetics ; 201(3): 1263-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26354769

RESUMEN

While the pace of discovery of human genetic variants in tumors, patients, and diverse populations has rapidly accelerated, deciphering their functional consequence has become rate-limiting. Using cross-species complementation, model organisms like the budding yeast, Saccharomyces cerevisiae, can be utilized to fill this gap and serve as a platform for testing human genetic variants. To this end, we performed two parallel screens, a one-to-one complementation screen for essential yeast genes implicated in chromosome instability and a pool-to-pool screen that queried all possible essential yeast genes for rescue of lethality by all possible human homologs. Our work identified 65 human cDNAs that can replace the null allele of essential yeast genes, including the nonorthologous pair yRFT1/hSEC61A1. We chose four human cDNAs (hLIG1, hSSRP1, hPPP1CA, and hPPP1CC) for which their yeast gene counterparts function in chromosome stability and assayed in yeast 35 tumor-specific missense mutations for growth defects and sensitivity to DNA-damaging agents. This resulted in a set of human-yeast gene complementation pairs that allow human genetic variants to be readily characterized in yeast, and a prioritized list of somatic mutations that could contribute to chromosome instability in human tumors. These data establish the utility of this cross-species experimental approach.


Asunto(s)
Genes Fúngicos , Prueba de Complementación Genética , Variación Genética , Genética Médica , Saccharomyces cerevisiae/genética , ADN Complementario , Estudios de Factibilidad , Genes Esenciales , Humanos , Mutación , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...