Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(16): 162501, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38701469

RESUMEN

The electromagnetic form factors of the proton and neutron encode information on the spatial structure of their charge and magnetization distributions. While measurements of the proton are relatively straightforward, the lack of a free neutron target makes measurements of the neutron's electromagnetic structure more challenging and more sensitive to experimental or model-dependent uncertainties. Various experiments have attempted to extract the neutron form factors from scattering from the neutron in deuterium, with different techniques providing different, and sometimes large, systematic uncertainties. We present results from a novel measurement of the neutron magnetic form factor using quasielastic scattering from the mirror nuclei ^{3}H and ^{3}He, where the nuclear effects are larger than for deuterium but expected to largely cancel in the cross-section ratios. We extracted values of the neutron magnetic form factor for low-to-modest momentum transfer, 0.6

2.
Nature ; 615(7954): 813-816, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36991189

RESUMEN

The proton is one of the main building blocks of all visible matter in the Universe1. Among its intrinsic properties are its electric charge, mass and spin2. These properties emerge from the complex dynamics of its fundamental constituents-quarks and gluons-described by the theory of quantum chromodynamics3-5. The electric charge and spin of protons, which are shared among the quarks, have been investigated previously using electron scattering2. An example is the highly precise measurement of the electric charge radius of the proton6. By contrast, little is known about the inner mass density of the proton, which is dominated by the energy carried by gluons. Gluons are hard to access using electron scattering because they do not carry an electromagnetic charge. Here we investigated the gravitational density of gluons using a small colour dipole, through the threshold photoproduction of the J/ψ particle. We determined the gluonic gravitational form factors of the proton7,8 from our measurement. We used a variety of models9-11 and determined, in all cases, a mass radius that is notably smaller than the electric charge radius. In some, but not all cases, depending on the model, the determined radius agrees well with first-principle predictions from lattice quantum chromodynamics12. This work paves the way for a deeper understanding of the salient role of gluons in providing gravitational mass to visible matter.

3.
Phys Rev Lett ; 129(4): 042501, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939025

RESUMEN

We report a precise measurement of the parity-violating (PV) asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{48}Ca. We measure A_{PV}=2668±106(stat)±40(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(q=0.8733 fm^{-1})=0.1304±0.0052(stat)±0.0020(syst) and the charge minus the weak form factor F_{ch}-F_{W}=0.0277±0.0055. The resulting neutron skin thickness R_{n}-R_{p}=0.121±0.026(exp)±0.024(model) fm is relatively thin yet consistent with many model calculations. The combined CREX and PREX results will have implications for future energy density functional calculations and on the density dependence of the symmetry energy of nuclear matter.

4.
Phys Rev Lett ; 128(14): 142501, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35476486

RESUMEN

We report precision determinations of the beam-normal single spin asymmetries (A_{n}) in the elastic scattering of 0.95 and 2.18 GeV electrons off ^{12}C, ^{40}Ca, ^{48}Ca, and ^{208}Pb at very forward angles where the most detailed theoretical calculations have been performed. The first measurements of A_{n} for ^{40}Ca and ^{48}Ca are found to be similar to that of ^{12}C, consistent with expectations and thus demonstrating the validity of theoretical calculations for nuclei with Z≤20. We also report A_{n} for ^{208}Pb at two new momentum transfers (Q^{2}) extending the previous measurement. Our new data confirm the surprising result previously reported, with all three data points showing significant disagreement with the results from the Z≤20 nuclei. These data confirm our basic understanding of the underlying dynamics that govern A_{n} for nuclei containing ≲50 nucleons, but point to the need for further investigation to understand the unusual A_{n} behavior discovered for scattering off ^{208}Pb.

5.
Phys Rev Lett ; 127(24): 242001, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34951781

RESUMEN

We report the results of a Monte Carlo global QCD analysis of unpolarized parton distribution functions (PDFs), including for the first time constraints from ratios of ^{3}He to ^{3}H structure functions recently obtained by the MARATHON experiment at Jefferson Lab. Our simultaneous analysis of nucleon PDFs and nuclear effects in A=2 and A=3 nuclei reveals the first indication for an isovector nuclear EMC effect in light nuclei. We find that while the MARATHON data yield relatively weak constraints on the F_{2}^{n}/F_{2}^{p} neutron to proton structure function ratio and on the d/u PDF ratio, they suggest an enhanced nuclear effect on the d-quark PDF in the bound proton, questioning the assumptions commonly made in nuclear PDF analyses.

6.
Phys Rev Lett ; 126(17): 172502, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988387

RESUMEN

We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616 GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071 fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo) fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo) fm^{-3}. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars.

7.
Phys Rev Lett ; 123(18): 182501, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31763910

RESUMEN

Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this Letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive ω electroproduction off the proton, ep→e^{'}pω, at central Q^{2} values of 1.60, 2.45 GeV^{2}, at W=2.21 GeV. The results of our pioneering -u≈-u_{min} study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^{2}=2.45 GeV^{2}, the observed dominance of σ_{T} over σ_{L}, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes: universal nonperturbative objects only accessible through backward-angle kinematics.

8.
Phys Rev Lett ; 123(2): 022501, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386522

RESUMEN

We present extractions of the nucleon nonsinglet moments utilizing new precision data on the deuteron F_{2} structure function at large Bjorken-x determined via the Rosenbluth separation technique at Jefferson Lab Experimental Hall C. These new data are combined with a complementary set of data on the proton previously measured in Hall C at similar kinematics and world datasets on the proton and deuteron at lower x measured at SLAC and CERN. The new Jefferson Lab data provide coverage of the upper third of the x range, crucial for precision determination of the higher moments. In contrast to previous extractions, these moments have been corrected for nuclear effects in the deuteron using a new global fit to the deuteron and proton data. The obtained experimental moments represent an order of magnitude improvement in precision over previous extractions using high x data. Moreover, recent exciting developments in lattice QCD calculations provide a first ever comparison of these new experimental results with calculations of moments carried out at the physical pion mass, as well as a new approach that first calculates the quark distributions directly before determining moments.

9.
Nat Commun ; 8(1): 1408, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123117

RESUMEN

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)-a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the regime where the scattering is expected to occur off a single quark, measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.

10.
Phys Rev Lett ; 118(22): 222002, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28621966

RESUMEN

We report the first longitudinal-transverse separation of the deeply virtual exclusive π^{0} electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσ_{L}/dt, dσ_{T}/dt, dσ_{LT}/dt, and dσ_{TT}/dt are extracted as a function of the momentum transfer to the recoil system at Q^{2}=1.75 GeV^{2} and x_{B}=0.36. The ed→edπ^{0} cross sections are found compatible with the small values expected from theoretical models. The en→enπ^{0} cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π^{0} electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

11.
Phys Rev Lett ; 117(26): 262001, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28059549

RESUMEN

We present deeply virtual π^{0} electroproduction cross-section measurements at x_{B}=0.36 and three different Q^{2} values ranging from 1.5 to 2 GeV^{2}, obtained from Jefferson Lab Hall A experiment E07-007. The Rosenbluth technique is used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component and, thus, is far from the asymptotic limit predicted by perturbative quantum chromodynamics. Nonetheless, an indication of a nonzero longitudinal contribution is provided by the measured interference term σ_{LT}. Results are compared with several models based on the leading-twist approach of generalized parton distributions (GPDs). In particular, a fair agreement is obtained with models in which the scattering amplitude includes convolution terms of chiral-odd (transversity) GPDs of the nucleon with the twist-3 pion distribution amplitude. This experiment, together with previous extensive unseparated measurements, provides strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high-Q^{2} regime.

12.
Phys Rev Lett ; 115(15): 152001, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26550716

RESUMEN

Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θ_{cm}^{p}=70°. The longitudinal transfer K_{LL}, measured to be 0.645±0.059±0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ~3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.

13.
Phys Rev Lett ; 114(19): 192503, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024167

RESUMEN

New results are reported from a measurement of π^{0} electroproduction near threshold using the p(e,e^{'}p)π^{0} reaction. The experiment was designed to determine precisely the energy dependence of s- and p-wave electromagnetic multipoles as a stringent test of the predictions of chiral perturbation theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the ϕ_{π}^{*} and θ_{π}^{*} angles in the pπ^{0} center of mass was obtained for invariant energies above threshold from 0.5 up to 15 MeV. The 4-momentum transfer Q^{2} coverage ranges from 0.05 to 0.155 (GeV/c)^{2} in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p-wave predictions from ChPT for Q^{2}>0.07 (GeV/c)^{2}, while the s-wave predictions are in reasonable agreement.

14.
Phys Rev Lett ; 112(18): 182501, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856691

RESUMEN

The study of exclusive π(±) electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio RL=σL(π-)/σL(π+) is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of RT=σT(π-)/σT(π+) from unity at small -t, to 1/4 at large -t, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative QCD than the individual cross sections. We have performed the first complete separation of the four unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive π(±) electroproduction on the deuteron at central Q(2) values of 0.6, 1.0, 1.6 GeV(2) at W=1.95 GeV, and Q(2)=2.45 GeV(2) at W=2.22 GeV. Here, we present the L and T cross sections, with emphasis on RL and RT, and compare them with theoretical calculations. Results for the separated ratio RL indicate dominance of the pion-pole diagram at low -t, while results for RT are consistent with a transition between pion knockout and quark knockout mechanisms.

15.
Phys Rev Lett ; 110(15): 152002, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25167253

RESUMEN

We present an extraction of the lowest three moments of the proton longitudinal structure function FL from world data between Q(2)=0.75 and 45 (GeV/c)(2). The availability of new FL data at low Bjorken x from HERA and at large x from Jefferson Lab allows the first determination of these moments over a large Q(2) range, relatively free from uncertainties associated with extrapolations into unmeasured regions. The moments are found to be underestimated by leading twist structure function parametrizations, especially for the higher moments, suggesting either the presence of significant higher twist effects in FL and/or a larger gluon distribution at high x.

16.
Phys Rev Lett ; 108(14): 142001, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22540786

RESUMEN

We report on the first measurement of the F(2) structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲100 MeV/c and their angles to ≳100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F(2)(n) data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65

17.
Phys Rev Lett ; 108(9): 092502, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22463628

RESUMEN

We present new measurements of electron scattering from high-momentum nucleons in nuclei. These data allow an improved determination of the strength of two-nucleon correlations for several nuclei, including light nuclei where clustering effects can, for the first time, be examined. The data also include the kinematic region where three-nucleon correlations are expected to dominate.

18.
Med Phys ; 39(6Part14): 3771, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28517295

RESUMEN

PURPOSE: An existing nuclear interaction cross-section of a positron emitter was used to predict range accuracy of proton beams and cross section of the positron emitters detected by the PET scanner Methods: To achieve this goal, a MLIC phantom was irradiated to 2Gy dose using 124.61MeV, 143.08MeV and 155.25MeV proton beam corresponding to the depths of 6.88cm, 10cm and 16cm, respectively, in the phantom. The activity produced in each phantom was examined by PET scanner within a couple of minutes post-irradiation. Hence, activity signal produced along the activated depth dose profile was recorded. In this project, the isotope production cross section for carbon from Landolt-Bornstein (1973) has been utilized. RESULTS: A good correlation (about 95%) between the positron emission and the isotope cross section of the carbon was observed. Consistency between the induced activity and the carbon isotope cross section occurred mainly at the distal aspect of the fall off zone of both relative cross-sections (i.e. between 60 - 100%). These results were obtained using the high relative abundance of carbon (i.e. 70%) in the phantoms.Conclusions The ranges measured by the depth dose profiles and positron emission profiles were in good agreement at the distal-fall off edge. Furthermore, it is confirmed that the interaction cross-sections of individual elements in the tissues could be used to determine the range accuracy of the proton depth dose profiles. None Applicable.

19.
Phys Rev Lett ; 106(12): 122301, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21517308

RESUMEN

We perform a global χ² analysis of nuclear parton distribution functions using data from charged current neutrino-nucleus (νA) deep-inelastic scattering (DIS), charged-lepton-nucleus (ℓ(±)A) DIS, and the Drell-Yan (DY) process. We show that the nuclear corrections in νA DIS are not compatible with the predictions derived from ℓ(±)A DIS and DY data. We quantify this result using a hypothesis-testing criterion based on the χ² distribution which we apply to the total χ² as well as to the χ² of the individual data sets. We find that it is not possible to accommodate the data from νA and ℓ(±)A DIS by an acceptable combined fit. Our result has strong implications for the extraction of both nuclear and proton parton distribution functions using combined neutrino and charged-lepton data sets.

20.
Phys Rev Lett ; 106(5): 052501, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21405386

RESUMEN

We measured with unprecedented precision the induced polarization P(y) in (4)He(e,e'p)(3)H at Q(2)=0.8 and 1.3 (GeV/c)(2). The induced polarization is indicative of reaction-mechanism effects beyond the impulse approximation. Our results are in agreement with a relativistic distorted-wave impulse approximation calculation but are overestimated by a calculation with strong charge-exchange effects. Our data are used to constrain the strength of the spin-independent charge-exchange term in the latter calculation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...