Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 18633, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545115

RESUMEN

In this study we aimed to compare the mineralogical, thermal, physicochemical, and biological characteristics of recent organic carbon-rich sediments ('sapropels') from three geographically distant Romanian lakes (Tekirghiol and Amara, SE Romania, and Ursu, Central Romania) with distinct hydrogeochemical origins, presently used for pelotherapy. The investigated lakes were classified as inland brackish Na-Cl-sulfated type (Amara), coastal moderately saline and inland hypersaline Na-Cl types (Tekirghiol and Ursu, respectively). The settled organic matter is largely composed of photosynthetic pigments derived from autochthonous phytoplankton. Kerogen was identified in the sapropel of coastal Tekirghiol Lake suggesting its incipient maturation stage. The mineral composition was fairly similar in all sapropels and mainly consisted of quartz, calcite, and aragonite. Smectite, illite, mixed layer smectite/illite appeared as major clay components. Potentially toxic elements were found in low concentrations. The physical properties (i.e., specific heat, thermal conductivity and retentivity) and cation exchange capacity are comparable to other peloids used for therapy. This study is the first comprehensive multi-approached investigation of the geochemical nature of recent sapropels in Romanian saline lakes and thus contributes to expanding our knowledge on the origin and physicochemical qualities of organic matter-rich peloids with therapeutic uses.

2.
mSphere ; 5(4)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727863

RESUMEN

Metagenome-assembled genomes (MAGs) of Asgardarchaeota have been recovered from a variety of habitats, broadening their environmental distribution and providing access to the genetic makeup of this archaeal lineage. The recent success in cultivating the first representative of Lokiarchaeia was a breakthrough in science at large and gave rise to new hypotheses about the evolution of eukaryotes. Despite their singular phylogenetic position at the base of the eukaryotic tree of life, the morphology of these bewildering organisms remains a mystery, except for the report of an unusual morphology with long, branching protrusions of the cultivated Lokiarchaeion strain "Candidatus Prometheoarchaeum syntrophicum" MK-D1. In order to visualize this elusive group, we applied a combination of fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH) and epifluorescence microscopy on coastal hypersaline sediment samples, using specifically designed CARD-FISH probes for Heimdallarchaeia and Lokiarchaeia lineages, and provide the first visual evidence for Heimdallarchaeia and new images of a lineage of Lokiarchaeia that is different from the cultured representative. Here, we show that while Heimdallarchaeia are characterized by a uniform cellular morphology typified by a centralized DNA localization, Lokiarchaeia display a plethora of shapes and sizes that likely reflect their broad phylogenetic diversity and ecological distribution.IMPORTANCE Asgardarchaeota are considered to be the closest relatives to modern eukaryotes. These enigmatic microbes have been mainly studied using metagenome-assembled genomes (MAGs). Only very recently, a first member of Lokiarchaeia was isolated and characterized in detail; it featured a striking morphology with long, branching protrusions. In order to visualize additional members of the phylum Asgardarchaeota, we applied a fluorescence in situ hybridization technique and epifluorescence microscopy on coastal hypersaline sediment samples, using specifically designed probes for Heimdallarchaeia and Lokiarchaeia lineages. We provide the first visual evidence for Heimdallarchaeia that are characterized by a uniform cellular morphology typified by an apparently centralized DNA localization. Further, we provide new images of a lineage of Lokiarchaeia that is different from the cultured representative and with multiple morphologies, ranging from small ovoid cells to long filaments. This diversity in observed cell shapes is likely owing to the large phylogenetic diversity within Asgardarchaeota, the vast majority of which remain uncultured.


Asunto(s)
Archaea/genética , Hibridación Fluorescente in Situ/métodos , Sondas de Oligonucleótidos/genética , Archaea/clasificación , Sedimentos Geológicos/microbiología , Microscopía Fluorescente , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...