Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 136(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36994763

RESUMEN

Looking back at two decades of research on SPIRE actin nucleator proteins, the first decade was clearly dominated by the discovery of SPIRE proteins as founding members of the novel WH2-domain-based actin nucleators, which initiate actin filament assembly through multiple WH2 actin-binding domains. Through complex formation with formins and class 5 myosins, SPIRE proteins coordinate actin filament assembly and myosin motor-dependent force generation. The discovery of SPIRE-regulated cytoplasmic actin filament meshworks in oocytes initiated the next phase of SPIRE research, which has found that SPIRE proteins are integrated in a diverse range of cell biological processes. In addition to regulating vesicle-based actin filament meshworks, SPIRE proteins function in the organisation of actin structures driving the inward movement of pronuclei of the mouse zygote. Localisation at cortical ring structures and the results of knockdown experiments indicate that SPIRE proteins function in the formation of meiotic cleavage sites in mammalian oocytes and the externalisation of von Willebrand factor from endothelial cells. Alternative splicing targets mammalian SPIRE1 towards mitochondria, where it has a role in fission. In this Review, we summarise the past two decades of SPIRE research by addressing the biochemical and cell biological functions of SPIRE proteins in mammalian reproduction, skin pigmentation and wound healing, as well as in mitochondrial dynamics and host-pathogen interactions.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Animales , Ratones , Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Endoteliales/metabolismo , Citoesqueleto de Actina/metabolismo , Forminas/metabolismo , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/metabolismo
2.
Cell Mol Life Sci ; 79(2): 96, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35084586

RESUMEN

Weibel-Palade bodies (WPB) are endothelial cell-specific storage granules that regulate vascular hemostasis by releasing the platelet adhesion receptor von Willebrand factor (VWF) following stimulation. Fusion of WPB with the plasma membrane is accompanied by the formation of actin rings or coats that support the expulsion of large multimeric VWF fibers. However, factor(s) organizing these actin ring structures have remained elusive. We now identify the actin-binding proteins Spire1 and Myosin Vc (MyoVc) as cytosolic factors that associate with WPB and are involved in actin ring formation at WPB-plasma membrane fusion sites. We show that both, Spire1 and MyoVc localize only to mature WPB and that upon Ca2+ evoked exocytosis of WPB, Spire1 and MyoVc together with F-actin concentrate in ring-like structures at the fusion sites. Depletion of Spire1 or MyoVc reduces the number of these actin rings and decreases the amount of VWF externalized to the cell surface after histamine stimulation.


Asunto(s)
Calcio/metabolismo , Exocitosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de Microfilamentos/metabolismo , Miosina Tipo V/metabolismo , Proteínas Nucleares/metabolismo , Factor de von Willebrand/metabolismo , Western Blotting , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Microscopía Confocal , Modelos Biológicos , Miosina Tipo V/genética , Proteínas Nucleares/genética , Interferencia de ARN , Cuerpos de Weibel-Palade/metabolismo
3.
Nat Commun ; 11(1): 3495, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661310

RESUMEN

Cell biologists generally consider that microtubules and actin play complementary roles in long- and short-distance transport in animal cells. On the contrary, using melanosomes of melanocytes as a model, we recently discovered that the motor protein myosin-Va works with dynamic actin tracks to drive long-range organelle dispersion in opposition to microtubules. This suggests that in animals, as in yeast and plants, myosin/actin can drive long-range transport. Here, we show that the SPIRE-type actin nucleators (predominantly SPIRE1) are Rab27a effectors that co-operate with formin-1 to generate actin tracks required for myosin-Va-dependent transport in melanocytes. Thus, in addition to melanophilin/myosin-Va, Rab27a can recruit SPIREs to melanosomes, thereby integrating motor and track assembly activity at the organelle membrane. Based on this, we suggest a model in which organelles and force generators (motors and track assemblers) are linked, forming an organelle-based, cell-wide network that allows their collective activity to rapidly disperse the population of organelles long-distance throughout the cytoplasm.


Asunto(s)
Actinas/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Biología Celular , Citoesqueleto/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Orgánulos , Filogenia , Proteínas rab27 de Unión a GTP/genética
4.
Small GTPases ; 10(2): 111-121, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-28394692

RESUMEN

Spir actin nucleators and myosin V motor proteins were recently discovered to coexist in a protein complex. The direct interaction allows the coordinated activation of actin motor proteins and actin filament track generation at vesicle membranes. By now the cooperation of myosin V (MyoV) motors and Spir actin nucleation function has only been shown in the exocytic transport of Rab11 vesicles in metaphase mouse oocytes. Next to Rab11, myosin V motors however interact with a variety of Rab GTPases including Rab3, Rab8 and Rab10. As a common theme most of the MyoV interacting Rab GTPases function at different steps along the exocytic transport routes. We here summarize the different transport functions of class V myosins and provide as proof of principle data showing a colocalization of Spir actin nucleators and MyoVa at Rab8a vesicles. This suggests that besides Rab11/MyoV transport also the Rab8/MyoV and possibly other MyoV transport processes recruit Spir actin filament nucleation function.


Asunto(s)
Actinas/metabolismo , Miosina Tipo V/metabolismo , Transporte Biológico , Humanos , Proteínas de Unión al GTP rho/metabolismo
5.
Brain Pathol ; 28(5): 695-709, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29222813

RESUMEN

Glioblastoma (GBM) represents the most common and most malignant type of primary brain tumor and significantly contributes to cancer morbidity and mortality. Invasion into the healthy brain parenchyma is a major feature of glioblastoma aggressiveness. Reelin (RELN) is a large secreted extracellular matrix glycoprotein that regulates neuronal migration and positioning in the developing brain and sustains functionality in the adult brain. We here show that both RELN and its main downstream effector DAB1 are silenced in glioblastoma as compared to non-neoplastic tissue and mRNA expression is inversely correlated with malignancy grade. Furthermore, RELN expression is positively correlated with patient survival in two large, independent clinically annotated datasets. RELN silencing occurs via promoter hypermethylation as shown by both database mining and bisulfite sequencing of the RELN promoter. Consequently, treatment with 5'-Azacytidine and trichostatin A induced RELN expression in vitro. On the functional level, we found RELN to regulate glioblastoma cell migration both in a DAB1 (tyrosine phosphorylation)-dependent and -independent fashion, depending on the substrate provided. Moreover, stimulation of RELN signaling strongly reduced proliferation in glioblastoma cells. This phenotype depends on DAB1 stimulation by RELN, as a mutant that lacks all RELN induced tyrosine phosphorylation sites (DAB1-5F) failed to induce a growth arrest. Proteomic analyzes revealed that these effects are mediated by a reduction in E2F targets and dephosphorylation of ERK1/2. Taken together, our data establish a relevance of RELN signaling in glioblastoma pathology and thereby might unearth novel, yet unrecognized treatment options.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Movimiento Celular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores de Tumor/metabolismo , Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Simulación por Computador , Proteínas de la Matriz Extracelular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteoma , ARN Mensajero/metabolismo , Proteína Reelina , Serina Endopeptidasas/genética , Transducción de Señal , Adulto Joven
6.
J Cell Sci ; 130(20): 3427-3435, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29032357

RESUMEN

The actin cytoskeleton and associated motor proteins provide the driving forces for establishing the astonishing morphological diversity and dynamics of mammalian cells. Aside from functions in protruding and contracting cell membranes for motility, differentiation or cell division, the actin cytoskeleton provides forces to shape and move intracellular membranes of organelles and vesicles. To establish the many different actin assembly functions required in time and space, actin nucleators are targeted to specific subcellular compartments, thereby restricting the generation of specific actin filament structures to those sites. Recent research has revealed that targeting and activation of actin filament nucleators, elongators and myosin motors are tightly coordinated by conserved protein complexes to orchestrate force generation. In this Cell Science at a Glance article and the accompanying poster, we summarize and discuss the current knowledge on the corresponding protein complexes and their modes of action in actin nucleation, elongation and force generation.


Asunto(s)
Citoesqueleto de Actina/fisiología , Seudópodos/fisiología , Citoesqueleto de Actina/ultraestructura , Actinas/fisiología , Actinas/ultraestructura , Animales , Fenómenos Fisiológicos Celulares , Células Cultivadas , Humanos , Multimerización de Proteína , Seudópodos/ultraestructura
7.
Elife ; 52016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27623148

RESUMEN

There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Membranas/metabolismo , Proteínas de Microfilamentos/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Cristalografía por Rayos X , Ratones , Proteínas de Microfilamentos/química , Modelos Moleculares , Miosina Tipo V/química , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas de Unión al GTP rab/química
8.
PLoS One ; 11(9): e0161965, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27627128

RESUMEN

Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.


Asunto(s)
Proteínas Bacterianas/fisiología , Estudio de Asociación del Genoma Completo/métodos , Interacciones Huésped-Patógeno/fisiología , Proteínas de Microfilamentos/fisiología , Proteínas Nucleares/fisiología , Salmonella typhimurium/patogenicidad , Animales , Línea Celular , Técnica del Anticuerpo Fluorescente , Células HeLa/metabolismo , Células HeLa/microbiología , Humanos , Ratones , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Salmonella typhimurium/fisiología
9.
J Biol Chem ; 290(10): 6428-44, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25564607

RESUMEN

Spir and formin (FMN)-type actin nucleators initiate actin polymerization at vesicular membranes necessary for long range vesicular transport processes. Here we studied in detail the membrane binding properties and protein/protein interactions that govern the assembly of the membrane-associated Spir·FMN complex. Using biomimetic membrane models we show that binding of the C-terminal Spir-2 FYVE-type zinc finger involves both the presence of negatively charged lipids and hydrophobic contributions from the turret loop that intrudes the lipid bilayer. In solution, we uncovered a yet unknown intramolecular interaction between the Spir-2 FYVE-type domain and the N-terminal kinase non-catalytic C-lobe domain (KIND) that could not be detected in the membrane-bound state. Interestingly, we found that the intramolecular Spir-2 FYVE/KIND and the trans-regulatory Fmn-2-FSI/Spir-2-KIND interactions are competitive. We therefore characterized co-expressed Spir-2 and Fmn-2 fluorescent protein fusions in living cells by fluorescence cross-correlation spectroscopy. The data corroborate a model according to which Spir-2 exists in two different states, a cytosolic monomeric conformation and a membrane-bound state in which the KIND domain is released and accessible for subsequent Fmn-2 recruitment. This sequence of interactions mechanistically couples membrane binding of Spir to the recruitment of FMN, a pivotal step for initiating actin nucleation at vesicular membranes.


Asunto(s)
Actinas/metabolismo , Proteínas de Microfilamentos/química , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/química , Actinas/química , Secuencia de Aminoácidos , Forminas , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas Nucleares/metabolismo , Mapas de Interacción de Proteínas/genética
10.
Trends Cell Biol ; 24(7): 407-15, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24675420

RESUMEN

The organization of cells into interconnected structures such as animal tissues requires a sophisticated system directing receptors and adhesion proteins to the cell surface. The Rab11 small G proteins (Rab11a, b, and Rab25) of the Ras superfamily are master regulators of the surface expression of receptors and adhesion proteins. Acting as a molecular switch, Rab11 builds distinct molecular machinery such as motor protein complexes and the exocyst to transport proteins to the cell surface. Recent evidence reveals Rab11 localization at the trans-Golgi network (TGN), post-Golgi vesicles, and the recycling endosome, placing it at the intersection between the endocytic and exocytic trafficking pathways. We review Rab11 in various cellular contexts, and discuss its regulation and mechanisms by which Rab11 couples with effector proteins.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Endosomas/metabolismo , Endosomas/fisiología , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Humanos , Transporte de Proteínas/fisiología , Red trans-Golgi/metabolismo , Red trans-Golgi/fisiología
11.
Eur J Cell Biol ; 93(5-6): 225-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24345451

RESUMEN

Spir proteins nucleate actin filaments at vesicle membranes and facilitate intracellular transport processes. The mammalian genome encodes two Spir proteins, namely Spir-1 and Spir-2. While the mouse spir-2 gene has a rather broad expression pattern, high levels of spir-1 expression are restricted to the nervous system, oocytes, and testis. Spir-1 mutant mice generated by a gene trap method have been employed to address Spir-1 function during mouse development and in adult mouse tissues, with a specific emphasis on viability, reproduction, and the nervous system. The gene trap cassette disrupts Spir-1 expression between the N-terminal KIND domain and the WH2 domain cluster. Spir-1 mutant mice are viable and were born in a Mendelian ratio. In accordance with the redundant function of Spir-1 and Spir-2 in oocyte maturation, spir-1 mutant mice are fertile. The overall brain anatomy of spir-1 mutant mice is not altered and visual and motor functions of the mice remain normal. Microscopic analysis shows a slight reduction in the number of dendritic spines on cortical neurons. Detailed behavioral studies of the spir-1 mutant mice, however, unveiled a very specific and highly significant phenotype in terms of fear learning in male mice. In contextual and cued fear conditioning experiments the male spir-1 mutant mice display increased fear memory when compared to their control littermates. Our data point toward a particular function of the vesicle associated Spir-1 actin organizer in neuronal circuits determining fear behavior.


Asunto(s)
Actinas/metabolismo , Miedo/psicología , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/ultraestructura , Condicionamiento Clásico , Dendritas/metabolismo , Espinas Dendríticas/ultraestructura , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas de Microfilamentos/metabolismo , Actividad Motora , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo , Percepción Visual
12.
Biol Chem ; 394(12): 1649-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23863697

RESUMEN

The diversity of cellular actin functions is attained by the activation of actin nucleator complexes, which initiate the polymerization of actin monomers into a helical double-stranded filament at defined subcellular compartments. Next to actin functions at the cell membrane, including different forms of membrane protrusions and invaginations, actin dynamics at intracellular membranes has recently become a research focus. Experiments addressing the vesicle-associated Spir WH2 domain containing actin nucleators have provided novel mechanistic insights into the function of actin dynamics at intracellular membranes. Spir proteins are targeted by a modified FYVE zinc finger motif toward endosomal and vesicle membranes, where they interact and cooperate with the distinct nucleators of the FMN subfamily of formins in the nucleation of actin filaments. The function of the Spir/formin actin nucleator complex is closely related to the Rab11 small G protein, which is a key regulator of recycling and exocytic transport processes. Together with the actin motor protein and Rab11 effector myosin Vb, Spir/formin nucleated actin filaments mediate actin-dependent vesicle transport processes. Drosophila and mouse genetic studies as well as cell biology experiments point toward an important role of the Spir/formin complex in oocyte maturation and in the structure and signaling of the nervous system.


Asunto(s)
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Fetales/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas de Drosophila/genética , Forminas , Humanos , Proteínas de Microfilamentos/genética , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso , Oocitos/fisiología , Estructura Terciaria de Proteína , Transducción de Señal , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo
13.
J Biol Chem ; 286(35): 30732-30739, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21705804

RESUMEN

The distinct actin nucleation factors of the Spir and formin subgroup families cooperate in actin nucleation. The Spir/formin cooperativity has been identified to direct two essential steps in mammalian oocyte maturation, the asymmetric spindle positioning and polar body extrusion during meiosis. Understanding the nature and regulation of the Spir/Fmn cooperation is an important requirement to comprehend mammalian reproduction. Recently we dissected the structural elements of the Spir and Fmn family proteins, which physically link the two actin nucleation factors. The trans-regulatory interaction is mediated by the Spir kinase non-catalytic C-lobe domain (KIND) and the C-terminal formin Spir interaction motif (FSI). The interaction inhibits formin nucleation activity and enhances the Spir activity. To get insights into the molecular mechanism of the Spir/Fmn interaction, we determined the crystal structure of the KIND domain alone and in complex with the C-terminal Fmn-2 FSI peptide. Together they confirm the proposed structural homology of the KIND domain to the protein kinase fold and reveal the basis of the Spir/formin interaction. The complex structure showed a large interface with conserved and positively charged residues of the Fmn FSI peptide mediating major contacts to an acidic groove on the surface of KIND. Protein interaction studies verified the electrostatic nature of the interaction. The data presented here provide the molecular basis of the Spir/formin interaction and give a first structural view into the mechanisms of actin nucleation factor cooperativity.


Asunto(s)
Actinas/química , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Cristalización , Cristalografía por Rayos X/métodos , Forminas , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Oocitos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Propiedades de Superficie
14.
Curr Biol ; 21(11): 955-60, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21620703

RESUMEN

Oocytes mature into eggs by extruding half of their chromosomes in a small cell termed the polar body. Asymmetric oocyte division is essential for fertility [1], but despite its importance, little is known about its mechanism. In mammals, the meiotic spindle initially forms close to the center of the oocyte. Thus, two steps are required for asymmetric meiotic division: first, asymmetric spindle positioning and second, polar body extrusion. Here, we identify Spire1 and Spire2 as new key factors in asymmetric division of mouse oocytes. Spire proteins are novel types of actin nucleators that drive nucleation of actin filaments with their four WH2 actin-binding domains [2-6]. We show that Spire1 and Spire2 first mediate asymmetric spindle positioning by assembling an actin network that serves as a substrate for spindle movement. Second, they drive polar body extrusion by promoting assembly of the cleavage furrow. Our data suggest that Spire1 and Spire2 cooperate with Formin-2 (Fmn2) to nucleate actin filaments in mouse oocytes and that both types of nucleators act as a functional unit. This study not only reveals how Spire1 and Spire2 drive two critical steps of asymmetric oocyte division, but it also uncovers the first physiological function of Spire-type actin nucleators in vertebrates.


Asunto(s)
División Celular/fisiología , Proteínas de Microfilamentos/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Oocitos/citología , Actinas/metabolismo , Animales , División Celular/genética , Polaridad Celular , Forminas , Ratones , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/metabolismo , Oocitos/metabolismo , Oocitos/ultraestructura , Interferencia de ARN , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
15.
PLoS One ; 6(5): e19931, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21603613

RESUMEN

The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animales , Recuperación de Fluorescencia tras Fotoblanqueo , Ratones , Microscopía , Polimerizacion
16.
Eur J Cell Biol ; 90(11): 922-5, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21129813

RESUMEN

The assembly of actin monomers into filaments is a highly regulated basic cellular function. The structural organization of a cell, morphological changes or cell motility is dependent on actin filament dynamics. While within the last decade substantial knowledge has been acquired about actin dynamics at the cell membrane, today only little is known about the actin cytoskeleton and its functions at intracellular endosomal and organelle membranes. The Spir actin nucleators are specifically targeted towards endosomal membranes by a FYVE zinc finger membrane localization domain, and provide an important link to study the role of actin dynamics in the regulation of intracellular membrane transport. Spir proteins are the founding members of a novel class of actin nucleation factors, which initiate actin polymerization by binding of actin monomers to one or multiple Wiskott-Aldrich syndrome protein (WASp) homology 2 (WH2) domains. Although Spir proteins can nucleate actin polymerization in vitro by themselves, they form a regulatory complex with the distinct actin nucleators of the formin subgroup (Fmn) of formins. A cooperative mechanism in actin nucleation has been proposed. Ongoing studies on the function and regulation of the Spir proteins in vesicle transport processes will reveal important insights into actin dynamics at intracellular membranes and how this regulates the highly directed and controlled routes of intracellular membrane trafficking.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Proteínas Fetales/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Forminas , Humanos , Unión Proteica
17.
Gene Expr Patterns ; 10(7-8): 345-50, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20723621

RESUMEN

Spir proteins are the founding members of the novel class of WH2 domain containing actin nucleation factors. They initiate actin polymerization by binding of actin monomers to four WH2 domains in the central part of the proteins. Despite their ability to nucleate actin polymerization in vitro by themselves, Spir proteins form a regulatory complex with the distinct actin nucleators of the formin subgroup of formins. The mammalian genome encodes two spir genes, spir-1 and spir-2. The corresponding proteins have an identical structural array and share a high degree of homology. Here, we have addressed the yet unknown expression of the mouse spir-2 gene. Northern blot analysis revealed that the spir-2 gene is expressed as a single mRNA. During embryogenesis in situ hybridizations show spir-2 to be expressed in the developing nervous system and intestine. In adult mouse tissues highest expression of spir-2 was detected in the epithelial cells of the digestive tract and in neuronal cells of the nervous system. High expression was also detected in testical spermatocytes. In contrast to the restricted expression of the mouse spir-1 gene, which is mainly found in the nervous system, our data presented here show a distinct and broader expression pattern of the spir-2 gene and by this support a more general cell biological function of the novel actin nucleators.


Asunto(s)
Actinas/metabolismo , Sistema Nervioso Central/metabolismo , Expresión Génica , Mucosa Intestinal/metabolismo , Proteínas de Microfilamentos/genética , Citoesqueleto de Actina/metabolismo , Actinas/biosíntesis , Actinas/genética , Animales , Northern Blotting , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Desarrollo Embrionario , Células Epiteliales/citología , Células Epiteliales/metabolismo , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Hibridación in Situ , Intestinos/embriología , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermatocitos/citología , Espermatocitos/metabolismo
18.
J Biol Chem ; 284(37): 25324-33, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19605360

RESUMEN

The actin nucleation factors Spire and Cappuccino interact with each other and regulate essential cellular events during Drosophila oogenesis in a cooperative fashion. The interaction blocks formin actin nucleation activity and enhances the Spire activity. Analogous to Spire and Cappuccino, the mammalian homologs Spir-1 and formin-2 show a regulatory interaction. To get an understanding of the nature of the Spir-formin cooperation, we have analyzed the interaction biochemically and biophysically. Our data shows that the association of Spir-1 and formin-2 is not significantly mediated by binding of the Spir-1-KIND domain to the formin FH2 core domain. Instead, a short sequence motif C-terminal adjacent to the formin-2-FH2 domain could be characterized that mediates the interaction and is conserved among the members of the Fmn subgroup of formins. In line with this, we found that both mammalian Spir proteins, Spir-1 and Spir-2, interact with mammalian Fmn subgroup proteins formin-1 and formin-2.


Asunto(s)
Proteínas Fetales/química , Proteínas de Microfilamentos/química , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Secuencia de Aminoácidos , Animales , Anisotropía , Proliferación Celular , Forminas , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Modelos Biológicos , Datos de Secuencia Molecular , Oogénesis , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
20.
J Cell Biol ; 179(1): 117-28, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17923532

RESUMEN

Spire and Cappuccino are actin nucleation factors that are required to establish the polarity of Drosophila melanogaster oocytes. Their mutant phenotypes are nearly identical, and the proteins interact biochemically. We find that the interaction between Spire and Cappuccino family proteins is conserved across metazoan phyla and is mediated by binding of the formin homology 2 (FH2) domain from Cappuccino (or its mammalian homologue formin-2) to the kinase noncatalytic C-lobe domain (KIND) from Spire. In vitro, the KIND domain is a monomeric folded domain. Two KIND monomers bind each FH2 dimer with nanomolar affinity and strongly inhibit actin nucleation by the FH2 domain. In contrast, formation of the Spire-Cappuccino complex enhances actin nucleation by Spire. In Drosophila oocytes, Spire localizes to the cortex early in oogenesis and disappears around stage 10b, coincident with the onset of cytoplasmic streaming.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Microfilamentos/metabolismo , Actinas/metabolismo , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Microtúbulos/metabolismo , Oogénesis , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...