Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376388

RESUMEN

Accurate reconstruction of Escherichia coli antibiotic resistance gene (ARG) plasmids from Illumina sequencing data has proven to be a challenge with current bioinformatic tools. In this work, we present an improved method to reconstruct E. coli plasmids using short reads. We developed plasmidEC, an ensemble classifier that identifies plasmid-derived contigs by combining the output of three different binary classification tools. We showed that plasmidEC is especially suited to classify contigs derived from ARG plasmids with a high recall of 0.941. Additionally, we optimized gplas, a graph-based tool that bins plasmid-predicted contigs into distinct plasmid predictions. Gplas2 is more effective at recovering plasmids with large sequencing coverage variations and can be combined with the output of any binary classifier. The combination of plasmidEC with gplas2 showed a high completeness (median=0.818) and F1-Score (median=0.812) when reconstructing ARG plasmids and exceeded the binning capacity of the reference-based method MOB-suite. In the absence of long-read data, our method offers an excellent alternative to reconstruct ARG plasmids in E. coli.


Asunto(s)
Escherichia coli , Secuenciación de Nucleótidos de Alto Rendimiento , Escherichia coli/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Plásmidos/genética
2.
PeerJ ; 12: e16695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188174

RESUMEN

Antimicrobial resistance genes (ARG) are commonly found on acquired mobile genetic elements (MGEs) such as plasmids or transposons. Understanding the spread of resistance genes associated with mobile elements (mARGs) across different hosts and environments requires linking ARGs to the existing mobile reservoir within bacterial communities. However, reconstructing mARGs in metagenomic data from diverse ecosystems poses computational challenges, including genome fragment reconstruction (assembly), high-throughput annotation of MGEs, and identification of their association with ARGs. Recently, several bioinformatics tools have been developed to identify assembled fragments of plasmids, phages, and insertion sequence (IS) elements in metagenomic data. These methods can help in understanding the dissemination of mARGs. To streamline the process of identifying mARGs in multiple samples, we combined these tools in an automated high-throughput open-source pipeline, MetaMobilePicker, that identifies ARGs associated with plasmids, IS elements and phages, starting from short metagenomic sequencing reads. This pipeline was used to identify these three elements on a simplified simulated metagenome dataset, comprising whole genome sequences from seven clinically relevant bacterial species containing 55 ARGs, nine plasmids and five phages. The results demonstrated moderate precision for the identification of plasmids (0.57) and phages (0.71), and moderate sensitivity of identification of IS elements (0.58) and ARGs (0.70). In this study, we aim to assess the main causes of this moderate performance of the MGE prediction tools in a comprehensive manner. We conducted a systematic benchmark, considering metagenomic read coverage, contig length cutoffs and investigating the performance of the classification algorithms. Our analysis revealed that the metagenomic assembly process is the primary bottleneck when linking ARGs to identified MGEs in short-read metagenomics sequencing experiments rather than ARGs and MGEs identification by the different tools.


Asunto(s)
Bacteriófagos , Metagenoma , Metagenoma/genética , Elementos Transponibles de ADN/genética , Ecosistema , Algoritmos , Bacteriófagos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...