Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Immunol ; 14: 1193535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035105

RESUMEN

Neuropilin-1 (Nrp1), a transmembrane protein expressed on CD4+ T cells, is mostly studied in the context of regulatory T cell (Treg) function. More recently, there is increasing evidence that Nrp1 is also highly expressed on activated effector T cells and that increases in these Nrp1-expressing CD4+ T cells correspond with immunopathology across several T cell-dependent disease models. Thus, Nrp1 may be implicated in the identification and function of immunopathologic T cells. Nrp1 downregulation in CD4+ T cells is one of the strongest transcriptional changes in response to immunoregulatory compounds that act though the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. To better understand the link between AhR and Nrp1 expression on CD4+ T cells, Nrp1 expression was assessed in vivo and in vitro following AhR ligand treatment. In the current study, we identified that the percentage of Nrp1 expressing CD4+ T cells increases over the course of activation and proliferation in vivo. The actively dividing Nrp1+Foxp3- cells express the classic effector phenotype of CD44hiCD45RBlo, and the increase in Nrp1+Foxp3- cells is prevented by AhR activation. In contrast, Nrp1 expression is not modulated by AhR activation in non-proliferating CD4+ T cells. The downregulation of Nrp1 on CD4+ T cells was recapitulated in vitro in cells isolated from C57BL/6 and NOD (non-obese diabetic) mice. CD4+Foxp3- cells expressing CD25, stimulated with IL-2, or differentiated into Th1 cells, were particularly sensitive to AhR-mediated inhibition of Nrp1 upregulation. IL-2 was necessary for AhR-dependent downregulation of Nrp1 expression both in vitro and in vivo. Collectively, the data demonstrate that Nrp1 is a CD4+ T cell activation marker and that regulation of Nrp1 could be a previously undescribed mechanism by which AhR ligands modulate effector CD4+ T cell responses.


Asunto(s)
Interleucina-2 , Neuropilina-1 , Receptores de Hidrocarburo de Aril , Animales , Ratones , Factores de Transcripción Forkhead/metabolismo , Interleucina-2/metabolismo , Ligandos , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Neuropilina-1/genética , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T Reguladores/metabolismo , Regulación hacia Arriba
2.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808764

RESUMEN

Neuropilin-1 (Nrp1), a transmembrane protein expressed on CD4 + T cells, is mostly studied in the context of regulatory T cell (Treg) function. More recently, there is increasing evidence that Nrp1 is also highly expressed on activated effector T cells and that increases in these Nrp1-expressing CD4 + T cells correspond with immunopathology across several T cell-dependent disease models. Thus, Nrp1 may be implicated in the identification and function of immunopathologic T cells. Nrp1 downregulation in CD4 + T cells is one of the strongest transcriptional changes in response to immunoregulatory compounds that act though the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. To better understand the link between AhR and Nrp1 expression on CD4 + T cells, Nrp1 expression was assessed in vivo and in vitro following AhR ligand treatment. In the current study, we identified that the percentage of Nrp1 expressing CD4 + T cells increases over the course of activation and proliferation in vivo . The actively dividing Nrp1 + Foxp3 - cells express the classic effector phenotype of CD44 hi CD45RB lo , and the increase in Nrp1 + Foxp3 - cells is prevented by AhR activation. In contrast, Nrp1 expression is not modulated by AhR activation in non-proliferating CD4 + T cells. The downregulation of Nrp1 on CD4 + T cells was recapitulated in vitro in cells isolated from C57BL/6 and NOD (non-obese diabetic) mice. CD4 + Foxp3 - cells expressing CD25, stimulated with IL-2, or differentiated into Th1 cells, were particularly sensitive to AhR-mediated inhibition of Nrp1 upregulation. IL-2 was necessary for AhR-dependent downregulation of Nrp1 expression both in vitro and in vivo . Collectively, the data demonstrate that Nrp1 is a CD4 + T cell activation marker and that regulation of Nrp1 could be a previously undescribed mechanism by which AhR ligands modulate effector CD4 + T cell responses.

3.
FEBS J ; 290(8): 2064-2084, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36401795

RESUMEN

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and functions as a tumour suppressor in different cancer models. In the present study, we report detailed characterization of 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ) as a select modulator of AhR-regulated transcription (SMAhRT) with anti-cancer actions. Treatment of lung cancer cells with 11-Cl-BBQ induced potent and sustained AhR-dependent anti-proliferative effects by promoting G1 phase cell cycle arrest. Investigation of 11-Cl-BBQ-induced transcription in H460 cells with or without the AhR expression by RNA-sequencing revealed activation of p53 signalling. In addition, 11-Cl-BBQ suppressed multiple pathways involved in DNA replication and increased expression of cyclin-dependent kinase inhibitors, including p27Kip1 , in an AhR-dependent manner. CRISPR/Cas9 knockout of individual genes revealed the requirement for both p53 and p27Kip1 for the AhR-mediated anti-proliferative effects. Our results identify 11-Cl-BBQ as a potential lung cancer therapeutic, highlight the feasibility of targeting AhR and provide important mechanistic insights into AhR-mediated-anticancer actions.


Asunto(s)
Neoplasias Pulmonares , Receptores de Hidrocarburo de Aril , Humanos , Proteínas de Ciclo Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , ARN , Proteína p53 Supresora de Tumor/genética
4.
Apoptosis ; 26(5-6): 307-322, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893898

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and a member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of proteins. The AhR was cloned and characterized for its role in mediating the toxicity of dioxins. Subsequent research has identified the role of AhR in suppression of cancer cell growth. We hypothesized that the AhR is a molecular target for therapeutic intervention in cancer, and that activation of the AhR by unique AhR ligands in cancer cells could have anti-cancer effects including induction of cell death. This study describes the discovery and characterization of a new class of anti-cancer agents targeting the AhR, that we designate as Select Modulators of AhR-regulated Transcription (SMAhRTs). We employed two independent small molecule screening approaches to identify potential SMAhRTs. We report the identification of CGS-15943 that activates AhR signaling and induces apoptosis in an AhR-dependent manner in liver and breast cancer cells. Investigation of the downstream signaling pathway of this newly identified SMAhRT revealed upregulation of Fas-ligand (FasL), which is required for AhR-mediated apoptosis. Our results provide a basis for further development of a new class of anti-cancer therapeutics targeting an underappreciated molecular target, the AhR.


Asunto(s)
Antineoplásicos/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Activación Transcripcional/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Línea Celular Tumoral , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Humanos , Ligandos , Ratones , Quinazolinas/farmacología , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Triazoles/farmacología
5.
Front Immunol ; 11: 606441, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552063

RESUMEN

The diet represents one environmental risk factor controlling the progression of type 1 diabetes (T1D) in genetically susceptible individuals. Consequently, understanding which specific nutritional components promote or prevent the development of disease could be used to make dietary recommendations in prediabetic individuals. In the current study, we hypothesized that the immunoregulatory phytochemcial, indole-3-carbinol (I3C) which is found in cruciferous vegetables, will regulate the progression of T1D in nonobese diabetic (NOD) mice. During digestion, I3C is metabolized into ligands for the aryl hydrocarbon receptor (AhR), a transcription factor that when systemically activated prevents T1D. In NOD mice, an I3C-supplemented diet led to strong AhR activation in the small intestine but minimal systemic AhR activity. In the absence of this systemic response, the dietary intervention led to exacerbated insulitis. Consistent with the compartmentalization of AhR activation, dietary I3C did not alter T helper cell differentiation in the spleen or pancreatic draining lymph nodes. Instead, dietary I3C increased the percentage of CD4+RORγt+Foxp3- (Th17 cells) in the lamina propria, intraepithelial layer, and Peyer's patches of the small intestine. The immune modulation in the gut was accompanied by alterations to the intestinal microbiome, with changes in bacterial communities observed within one week of I3C supplementation. A transkingdom network was generated to predict host-microbe interactions that were influenced by dietary I3C. Within the phylum Firmicutes, several genera (Intestinimonas, Ruminiclostridium 9, and unclassified Lachnospiraceae) were negatively regulated by I3C. Using AhR knockout mice, we validated that Intestinimonas is negatively regulated by AhR. I3C-mediated microbial dysbiosis was linked to increases in CD25high Th17 cells. Collectively, these data demonstrate that site of AhR activation and subsequent interactions with the host microbiome are important considerations in developing AhR-targeted interventions for T1D.


Asunto(s)
Bacterias/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/agonistas , Diabetes Mellitus Tipo 1/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Indoles/toxicidad , Intestino Delgado/efectos de los fármacos , Receptores de Hidrocarburo de Aril/agonistas , Células Th17/efectos de los fármacos , Animales , Bacterias/inmunología , Bacterias/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Exposición Dietética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Disbiosis , Interacciones Huésped-Patógeno , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Ratones Endogámicos NOD , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
6.
Toxicol Sci ; 161(2): 310-320, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040756

RESUMEN

FICZ and TCDD, two high-affinity AhR ligands, are reported to have opposite effects on T cell differentiation with TCDD inducing regulatory T cells and FICZ inducing Th17 cells. This dichotomy has been attributed to ligand-intrinsic differences in AhR activation, although differences in sensitivity to metabolism complicate the issue. TCDD is resistant to AhR-induced metabolism and produces sustained AhR activation following a single dose in the µg/kg range, whereas FICZ is rapidly metabolized and AhR activation is transient. Nonetheless, prior studies comparing FICZ with TCDD have generally used the same 10-50 µg/kg dose range, and thus the two ligands would not equivalently activate AhR. We hypothesized that high-affinity AhR ligands can promote CD4+ T cell differentiation into both Th17 cells and Tregs, with fate depending on the extent and duration of AhR activation. We compared the immunosuppressive effects of TCDD and FICZ, along with two other rapidly metabolized ligands (ITE and 11-Cl-BBQ) in an acute alloresponse mouse model. The dose and timing of administration of each ligand was optimized for TCDD-equivalent Cyp1a1 induction. When optimized, all of the ligands suppressed the alloresponse in conjunction with the induction of Foxp3- Tr1 cells on day 2 and the expansion of natural Foxp3+ Tregs on day 10. In contrast, a low dose of FICZ induced transient expression of Cyp1a1 and did not induce Tregs or suppress the alloresponse but enhanced IL-17 production. Interestingly, low doses of the other ligands, including TCDD, also increased IL-17 production on day 10. These findings support the conclusion that the dose and the duration of AhR activation by high-affinity AhR ligands are the primary factors driving the fate of T cell differentiation.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Carbazoles/toxicidad , Diferenciación Celular/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunidad Celular/efectos de los fármacos , Ligandos , Ratones Endogámicos C57BL , Factores de Tiempo
7.
Biology (Basel) ; 6(4)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194351

RESUMEN

We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure-activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR.

8.
Curr Opin Toxicol ; 2: 72-78, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28944315

RESUMEN

There is a long standing perception that AhR ligands are automatically disqualified from pharmaceutical development due to their induction of Cyp1a1 as well as their potential for causing "dioxin-like" toxicities. However, recent discoveries of new AhR ligands with potential therapeutic applications have been reported, inviting reconsideration of this policy. One area of exploration is focused on the activation of AhR to promote the generation of regulatory T cells, which control the intensity and duration of immune responses. Rapidly metabolized AhR ligands (RMAhRLs), which do not bioaccumulate in the same manner as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) have been discovered that induce Tregs and display impressive therapeutic efficacy in a broad range of preclinical models of immune-mediated diseases. Given the promise of these RMAhRLs, is the bias against AhR activators still valid? Can RMAhRLs be given chronically to maintain therapeutic levels of AhR activation without producing the same toxicity profile as dioxin-like compounds? Based on our review of the data, there is little evidence to support the indiscriminate exclusion of AhR activators/Cyp1a1 inducers from early drug developmental pipelines. We also found no evidence that short-term treatment with RMAhRLs produce "dioxin-like toxicity" and, in fact, were well tolerated. However, safety testing of individual RMAhRLs under therapeutic conditions, as performed with all promising new drugs, will be needed to reveal whether or not chronic activation of AhR leads to unacceptable adverse outcomes.

9.
Eur J Immunol ; 47(11): 1989-2001, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28833046

RESUMEN

Activation of the aryl hydrocarbon receptor (AhR) by immunosuppressive ligands promotes the development of regulatory T (Treg) cells. Although AhR-induced Foxp3+ Treg cells have been well studied, much less is known about the development and fate of AhR-induced Type 1 Treg (AhR-Tr1) cells. In the current study, we identified the unique transcriptional and functional changes in murine CD4+ T cells that accompany the differentiation of AhR-Tr1 cells during the CD4+ T-cell-dependent phase of an allospecific cytotoxic T lymphocyte (allo-CTL) response. AhR activation increased the expression of genes involved in T-cell activation, immune regulation and chemotaxis, as well as a global downregulation of genes involved in cell cycling.  Increased IL-2 production was responsible for the early AhR-Tr1 activation phenotype previously characterized as CD25+ CTLA4+ GITR+ on day 2. The AhR-Tr1 phenotype was further defined by the coexpression of the immunoregulatory receptors Lag3 and Tim3 and non-overlapping expression of CCR4 and CCR9. Consistent with the increased expression of CCR9, real-time imaging showed enhanced migration of AhR-Tr1 cells to the lamina propria of the small intestine and colon. The discovery of mucosal imprinting of AhR-Tr1 cells provides an additional mechanism by which therapeutic AhR ligands can control immunopathology.


Asunto(s)
Diferenciación Celular/inmunología , Interleucina-2/biosíntesis , Receptores de Hidrocarburo de Aril/inmunología , Linfocitos T Reguladores/inmunología , Aloinjertos , Animales , Linfocitos T CD4-Positivos/inmunología , Movimiento Celular/inmunología , Mucosa Intestinal/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Oncotarget ; 8(15): 25211-25225, 2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28424418

RESUMEN

The aryl hydrocarbon receptor (AhR) is a potential clinical target for cancer and autoimmune dysfunction. Identifying selective AhR modulators that produce desirable clinical outcomes represents an opportunity for developing new anti-cancer agents. Repurposing clinically-used drugs with established safety profiles that activate the AhR represents a good starting place to pursue this goal. In this study, we characterized the AhR-dependent effects of SU5416 (Semaxanib) following its identification in a small-molecule library screen. SU5416 potently activated AhR-dependent reporter genes, induced AhR nuclear localization, facilitated AhR-DNA binding, and increased, expression of its endogenous target genes. SU5416 significantly inhibited proliferation of Hepa1 hepatoma cells in an AhR-dependent manner, but did not induce apoptosis. SU5416 also inhibited the growth of human HepG2 liver cancer cells. The effects of SU5416 correlated with an increased G1 population and increased expression of cell cycle inhibitor p21cip1/waf1 at both the mRNA and protein level. Increased expression of p21cip1/waf1 by SU5416 required expression of both AhR and Arnt. In addition, evidence for long-term activation of the AhR in vivo by a single dose of SU5416 was identified by analyzing published microarray data. Our results provide support for continued investigation of the AhR as therapeutic for cancers such as hepatocellular carcinoma. In addition, our findings raise the possibility that some of the previously observed anti-proliferative effects of SU5416 may be due to activation of the AhR.


Asunto(s)
Antineoplásicos/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Indoles/farmacología , Neoplasias Hepáticas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Transducción de Señal/efectos de los fármacos
11.
J Immunol ; 196(1): 264-73, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26573835

RESUMEN

Aryl hydrocarbon receptor (AhR) activation by high-affinity ligands mediates immunosuppression in association with increased regulatory T cells (Tregs), making this transcription factor an attractive therapeutic target for autoimmune diseases. We recently discovered 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ), a nanomolar affinity AhR ligand with immunosuppressive activity and favorable pharmacologic properties. In this study, we tested the consequences of AhR activation in the NOD model. Oral 10-Cl-BBQ treatment prevented islet infiltration without clinical toxicity, whereas AhR-deficient NOD mice were not protected. Suppression of insulitis was associated with an increased frequency, but not total number, of Foxp3(+) Tregs in the pancreas and pancreatic lymph nodes. The requirement for Foxp3(+) cells in AhR-induced suppression of insulitis was tested using NOD.Foxp3(DTR) mice, which show extensive islet infiltration upon treatment with diphtheria toxin. AhR activation prevented the development of insulitis caused by the depletion of Foxp3(+) cells, demonstrating that Foxp3(+) cells are not required for AhR-mediated suppression and furthermore that the AhR pathway is able to compensate for the absence of Foxp3(+) Tregs, countering current dogma. Concurrently, the development of disease-associated CD4(+)Nrp1(+)Foxp3(-)RORγt(+) cells was inhibited by AhR activation. Taken together, 10-Cl-BBQ is an effective, nontoxic AhR ligand for the intervention of immune-mediated diseases that functions independently of Foxp3(+) Tregs to suppress pathogenic T cell development.


Asunto(s)
Bencimidazoles/administración & dosificación , Diabetes Mellitus Tipo 1/prevención & control , Inmunosupresores/administración & dosificación , Inflamación/prevención & control , Islotes Pancreáticos/efectos de los fármacos , Isoquinolinas/administración & dosificación , Receptores de Hidrocarburo de Aril/agonistas , Células TH1/inmunología , Células Th17/inmunología , Animales , Bencimidazoles/farmacología , Activación Enzimática , Factores de Transcripción Forkhead/metabolismo , Inmunosupresores/farmacología , Islotes Pancreáticos/inmunología , Isoquinolinas/farmacología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD
12.
Curr Protoc Toxicol ; 66: 18.8.1-18.8.34, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26523471

RESUMEN

Fluorescent immunophenotyping uses fluorescently-conjugated antibodies to identify, characterize and quantify distinct subpopulations of cells within heterogeneous single-cell populations, either in the context of tissue (using fluorescence and imaging microscopy) or in a single-cell suspension (using multiparameter imaging microscopy, imaging cytometry, and/or flow cytometry). Flow cytometry is an optical, laser-based technology which analyzes the physical and fluorescent properties of cells in suspension in real-time as they flow through the instrument. This approach has a number of advantages over other techniques that can be used for characterizing cell populations in single-cell suspensions, in that it can nonsubjectively interrogate up to millions of cells and acquire data on the presence of different cell subpopulations and phenotypical changes within these populations in seconds. This unit describes basic procedures for the direct and indirect immunofluorescent staining of surface and intracellular proteins that are expressed by lymphoid cells which have been isolated from tissues or blood. Protocols for the resolution of dead cells and for the fixation of cells are also included. This unit also provides essential information relating to the selection and titration of antibodies, fluorochrome choice, spectral overlap and compensation, the use of controls, and the standardization of data acquisition and analysis. It also highlights new technologies and platforms that can be used to interrogate the presence of cell subpopulations and their phenotype to an even greater depth.


Asunto(s)
Citometría de Flujo/métodos , Inmunofenotipificación , Linfocitos , Tejido Linfoide , Pruebas de Toxicidad/métodos , Animales , Citometría de Flujo/normas , Linfocitos/citología , Linfocitos/inmunología , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Pruebas de Toxicidad/normas
13.
Environ Int ; 85: 182-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26408946

RESUMEN

Silicone polymers are used for a wide array of applications from passive samplers in environmental studies, to implants used in human augmentation and reconstruction. If silicone sequesters toxicants throughout implantation, it may represent a history of exposure and potentially reduce the body burden of toxicants influencing the risk of adverse health outcomes such as breast cancer. Objectives of this research included identifying a wide variety of toxicants in human silicone implants, and measuring the in vivo absorption of contaminants into silicone and surrounding tissue in an animal model. In the first study, eight human breast implants were analyzed for over 1400 organic contaminants including consumer products, chemicals in commerce, and pesticides. A total of 14 compounds including pesticides such as trans-nonachlor (1.2-5.9ng/g) and p,p'-DDE (1.2-34ng/g) were identified in human implants, 13 of which have not been previously reported in silicone prostheses. In the second project, female ICR mice were implanted with silicone and dosed with p,p'-DDE and PCB118 by intraperitoneal injection. After nine days, silicone and adipose samples were collected, and all implants in dosed mice had p,p'-DDE and PCB118 present. Distribution ratios from silicone and surrounding tissue in mice compare well with similar studies, and were used to predict adipose concentrations in human tissue. Similarities between predicted and measured chemical concentrations in mice and humans suggest that silicone may be a reliable surrogate measure of persistent toxicants. More research is needed to identify the potential of silicone implants to refine the predictive quality of chemicals found in silicone implants.


Asunto(s)
Tejido Adiposo/química , Implantes de Mama , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Siliconas/análisis , Animales , Carga Corporal (Radioterapia) , Diclorodifenil Dicloroetileno/análisis , Diclorodifenil Dicloroetileno/farmacocinética , Femenino , Humanos , Hidrocarburos Clorados/análisis , Hidrocarburos Clorados/farmacocinética , Ratones , Ratones Endogámicos ICR , Plaguicidas/farmacocinética
14.
Environ Health Perspect ; 123(6): 590-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25636148

RESUMEN

BACKGROUND: Arsenic is an immunotoxicant. Clinical reports observe the reactivation of varicella zoster virus (VZV) in people who have recovered from arsenic poisoning and in patients with acute promyelocytic leukemia that have been treated with arsenic trioxide. OBJECTIVE: We evaluated the association between arsenic and the seroprevalence of VZV IgG antibody in a representative sample of the U.S. METHODS: We analyzed data from 3,348 participants of the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and 2009-2010 pooled survey cycles. Participants were eligible if they were 6-49 years of age with information on both VZV IgG and urinary arsenic concentrations. We used two measures of total urinary arsenic (TUA): TUA1 was defined as the sum of arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid, and TUA2 was defined as total urinary arsenic minus arsenobetaine and arsenocholine. RESULTS: The overall weighted seronegative prevalence of VZV was 2.2% for the pooled NHANES sample. The geometric means of TUA1 and TUA2 were 6.57 µg/L and 5.64 µg/L, respectively. After adjusting for age, sex, race, income, creatinine, and survey cycle, odds ratios for a negative VZV IgG result in association with 1-unit increases in natural log-transformed (ln)-TUA1 and ln-TUA2 were 1.87 (95% CI: 1.03, 3.44) and 1.40 (95% CI: 1.0, 1.97), respectively. CONCLUSIONS: In this cross-sectional analysis, urinary arsenic was inversely associated with VZV IgG seroprevalence in the U.S. POPULATION: This finding is in accordance with clinical observations of zoster virus reactivation from high doses of arsenic. Additional studies are needed to confirm the association and evaluate causal mechanisms.


Asunto(s)
Arsenicales/orina , Varicela/epidemiología , Exposición a Riesgos Ambientales , Contaminantes Ambientales/orina , Herpesvirus Humano 3/aislamiento & purificación , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Varicela/virología , Niño , Estudios Transversales , Monitoreo del Ambiente , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Encuestas Nutricionales , Prevalencia , Estudios Seroepidemiológicos , Estados Unidos/epidemiología , Adulto Joven
15.
Biology (Basel) ; 3(4): 645-69, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25329374

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3yl)ethyl)-9-isopropyl-2- (5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351). As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS) to search for novel ligands. Here, we have developed an "agonist-optimized" homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307-329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand.

17.
PLoS One ; 9(2): e88726, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586378

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays multiple roles in regulation of immune and inflammatory responses. The ability of certain AhR ligands to induce regulatory T cells (Tregs) has generated interest in developing AhR ligands for therapeutic treatment of immune-mediated diseases. To this end, we designed a screen for novel Treg-inducing compounds based on our understanding of the mechanisms of Treg induction by the well-characterized immunosuppressive AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We screened a ChemBridge small molecule library and identified 10-chloro-7H-benzimidazo[2,1-a]benzo[de]Iso-quinolin-7-one (10-Cl-BBQ) as a potent AhR ligand that was rapidly metabolized and not cytotoxic to proliferating T cells. Like TCDD,10-Cl-BBQ altered donor CD4(+) T cell differentiation during the early stages of a graft versus host (GVH) response resulting in expression of high levels of CD25, CTLA-4 and ICOS, as well as several genes associated with Treg function. The Treg phenotype required AhR expression in the donor CD4(+) T cells. Foxp3 was not expressed in the AhR-induced Tregs implicating AhR as an independent transcription factor for Treg induction. Structure-activity studies showed that unsubstituted BBQ as well as 4, 11-dichloro-BBQ were capable of inducing AhR-Tregs. Other substitutions reduced activation of AhR. Daily treatment with 10-Cl-BBQ during the GVH response prevented development of GVH disease in an AhR-dependent manner with no overt toxicity. Together, our data provide strong support for development of select BBQs that activate the AhR to induce Tregs for treatment of immune-mediated diseases.


Asunto(s)
Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Enfermedad Injerto contra Huésped/prevención & control , Isoquinolinas/metabolismo , Isoquinolinas/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Animales , Bencimidazoles/química , Bencimidazoles/farmacocinética , Enfermedad Injerto contra Huésped/inmunología , Inmunoterapia , Isoquinolinas/química , Isoquinolinas/farmacocinética , Cinética , Ligandos , Ratones , Relación Estructura-Actividad
18.
Toxicol Sci ; 135(1): 81-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23798565

RESUMEN

Activation of the aryl hydrocarbon receptor (AhR) by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces potent suppression of an acute graft-versus-host (GVH) response and prevents GVH disease (GVHD). Suppression is associated with development of a regulatory population of donor CD4(+) CD25(+)T-cells that express high levels of cytotoxic T-lymphocyte antigen 4 (CTLA-4). However, a direct link between these AhR-induced Tregs (AhR-Tregs) and suppression of GVHD remains to be shown. CTLA-4 is a negative regulator of T-cell responses and is associated with the induction of tolerogenic dendritic cells (DCs) that produce indoleamine 2,3-dioxygenase (IDO). We hypothesized that AhR-Tregs mediate suppression via their enhanced expression of CTLA-4, which, in turn, induces IFN-γ and IDO in host DCs. Subsequent depletion of tryptophan by IDO leads to termination of the donor T-cell response prior to development of effector CTL. Here, we show that despite increased expression of Ifng, Irf3, Irf7, Ido1, and Ido2 in the lymph nodes of TCDD-treated host mice, inhibition of IDO enzyme activity by 1-methyl-tryptophan was unable to relieve TCDD-mediated suppression of the GVH response. Furthermore, treatment with an anti-CTLA-4 antibody that blocks CTLA-4 signaling was also unable to alleviate TCDD-mediated suppression. Alternatively, we investigated the possibility that donor-derived AhR-Tregs produce IFN-γ to suppress effector CTL development. However, suppression of GVHD by TCDD was not affected by the use of Ifng-deficient donor cells. Together, these results indicate that neither overexpression of CTLA-4 nor production of IFN-γ by AhR-Tregs plays a major role in the manifestation of their immunosuppressive function in vivo.


Asunto(s)
Antígeno CTLA-4/fisiología , Enfermedad Injerto contra Huésped/prevención & control , Indolamina-Pirrol 2,3,-Dioxigenasa/fisiología , Interferón gamma/fisiología , Dibenzodioxinas Policloradas/farmacología , Enfermedad Aguda , Animales , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/fisiología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/inmunología
19.
J Immunotoxicol ; 9(4): 339-40, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23078377

RESUMEN

The Immunotoxicology Specialty Section of the Society of Toxicology (SOT) celebrated the 50(th) Anniversary of the SOT by constructing a poster to highlight the milestones of Immunotoxicology during that half-century period. This poster was assembled by an ad hoc committee and intertwines in words, citations, graphics, and photographs our attempts to capture a timeline reference of the development and progressive movement of immunotoxicology across the globe. This poster was displayed during the 50(th) Annual SOT Meeting in Washington DC in March, 2011. The poster can be accessed by any Reader at the SOT Website via the link http://www.toxicology.org/AI/MEET/AM2011/posters_rcsigss.asp#imss. We dedicate this poster to all of the founders and the scientists that followed them who have made the discipline of Immunotoxicology what it is today.


Asunto(s)
Alergia e Inmunología/tendencias , Toxicología/tendencias , Alergia e Inmunología/historia , District of Columbia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Sociedades Científicas , Toxicología/historia
20.
Front Immunol ; 3: 223, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22888330

RESUMEN

Activation of the aryl hydrocarbon receptor (AhR) by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4(+) T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg). Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4(+) T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4(+) T-cells from AhR(+/+) and AhR(-/-) mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced the expression of Cyp1a1, Cyp1b1, and Ahrr in CD4(+) T-cells from AhR(+/+) mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 h and Tr1 conditions at 48 h. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4(+) T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...