Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 14(9): 7256-7266, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38721374

RESUMEN

Stereoselective synthesis of quaternary stereocenters represents a significant challenge in organic chemistry. Herein, we describe the use of ene-reductases OPR3 and YqjM for the efficient asymmetric synthesis of chiral 4,4-disubstituted 2-cyclohexenones via desymmetrizing hydrogenation of prochiral 4,4-disubstituted 2,5-cyclohexadienones. This transformation breaks the symmetry of the cyclohexadienone substrates, generating valuable quaternary stereocenters with high enantioselectivities (ee, up to >99%). The mechanistic causes for the observed high enantioselectivities were investigated both experimentally (stopped-flow kinetics) as well as theoretically (quantum mechanics/molecular mechanics calculations). The synthetic potential of the resulting chiral enones was demonstrated in several diversification reactions in which the stereochemical integrity of the quaternary stereocenter could be preserved.

2.
FEBS J ; 291(7): 1560-1574, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263933

RESUMEN

Flavin mononucleotide (FMN)-dependent ene-reductases constitute a large family of oxidoreductases that catalyze the enantiospecific reduction of carbon-carbon double bonds. The reducing equivalents required for substrate reduction are obtained from reduced nicotinamide by hydride transfer. Most ene-reductases significantly prefer, or exclusively accept, either NADPH or NADH. Despite their usefulness in biocatalytic applications, the structural determinants for cofactor preference remain elusive. We employed the NADPH-preferring 12-oxophytodienoic acid reductase 3 from Solanum lycopersicum (SlOPR3) as a model enzyme of the ene-reductase family and applied computational and structural methods to investigate the binding specificity of the reducing coenzymes. Initial docking results indicated that the arginine triad R283, R343, and R366 residing on and close to a critical loop at the active site (loop 6) are the main contributors to NADPH binding. In contrast, NADH binds unfavorably in the opposite direction toward the ß-hairpin flap within a largely hydrophobic region. Notably, the crystal structures of SlOPR3 in complex with either NADPH4 or NADH4 corroborated these different binding modes. Molecular dynamics simulations confirmed NADH binding near the ß-hairpin flap and provided structural explanations for the low binding affinity of NADH to SlOPR3. We postulate that cofactor specificity is determined by the arginine triad/loop 6 and the residue(s) controlling access to a hydrophobic cleft formed by the ß-hairpin flap. Thus, NADPH preference depends on a properly positioned arginine triad, whereas granting access to the hydrophobic cleft at the ß-hairpin flap favors NADH binding.


Asunto(s)
NAD , Oxidorreductasas , Oxidorreductasas/metabolismo , NADP/metabolismo , NAD/metabolismo , Arginina , Carbono , Mononucleótido de Flavina/química , Sitios de Unión , NADH NADPH Oxidorreductasas/química
3.
Chembiochem ; 23(17): e202200311, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35770709

RESUMEN

Regioselective carbon-carbon bond formation belongs to the challenging tasks in organic synthesis. In this context, C-C bond formation catalyzed by 4-dimethylallyltryptophan synthases (4-DMATSs) represents a possible tool to regioselectively synthesize C4-prenylated indole derivatives without site-specific preactivation and circumventing the need of protection groups as used in chemical synthetic approaches. In this study, a toolbox of 4-DMATSs to produce a set of 4-dimethylallyl tryptophan and indole derivatives was identified. Using three wild-type enzymes as well as variants, various C5-substituted tryptophan derivatives as well as N-methyl tryptophan were successfully prenylated with conversions up to 90 %. Even truncated tryptophan derivatives like tryptamine and 3-indole propanoic acid were regioselectively prenylated in position C4. The acceptance of C5-substituted tryptophan derivatives was improved up to 5-fold by generating variants (e. g. T108S). The feasibility of semi-preparative prenylation of selected tryptophan derivatives was successfully demonstrated on 100 mg scale at 15 mM substrate concentration, allowing to reduce the previously published multistep chemical synthetic sequence to just a single step.


Asunto(s)
Dimetilaliltranstransferasa , Triptófano , Biocatálisis , Carbono , Dimetilaliltranstransferasa/metabolismo , Indoles/química , Prenilación , Especificidad por Sustrato , Triptófano/metabolismo
4.
Phytochemistry ; 189: 112822, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34118767

RESUMEN

Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are utilized as coenzymes in many biochemical reduction-oxidation reactions owing to the ability of the tricyclic isoalloxazine ring system to employ the oxidized, radical and reduced state. We have analyzed the genome of Arabidopsis thaliana to establish an inventory of genes encoding flavin-dependent enzymes (flavoenzymes) as a basis to explore the range of flavin-dependent biochemical reactions that occur in this model plant. Expectedly, flavoenzymes catalyze many pivotal reactions in primary catabolism, which are connected to the degradation of basic metabolites, such as fatty and amino acids as well as carbohydrates and purines. On the other hand, flavoenzymes play diverse roles in anabolic reactions most notably the biosynthesis of amino acids as well as the biosynthesis of pyrimidines and sterols. Importantly, the role of flavoenzymes goes much beyond these basic reactions and extends into pathways that are equally crucial for plant life, for example the production of natural products. In this context, we outline the participation of flavoenzymes in the biosynthesis and maintenance of cofactors, coenzymes and accessory plant pigments (e. g. carotenoids) as well as phytohormones. Moreover, several multigene families have emerged as important components of plant immunity, for example the family of berberine bridge enzyme-like enzymes, flavin-dependent monooxygenases and NADPH oxidases. Furthermore, the versatility of flavoenzymes is highlighted by their role in reactions leading to tRNA-modifications, chromatin regulation and cellular redox homeostasis. The favorable photochemical properties of the flavin chromophore are exploited by photoreceptors to govern crucial processes of plant adaptation and development. Finally, a sequence- and structure-based approach was undertaken to gain insight into the catalytic role of uncharacterized flavoenzymes indicating their involvement in unknown biochemical reactions and pathways in A. thaliana.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , Oxidación-Reducción
5.
Acta Neuropathol Commun ; 6(1): 52, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29958544

RESUMEN

Alzheimer's disease is characterized by accumulation of amyloid plaques and tau aggregates in several cortical brain regions. Tau phosphorylation causes formation of neurofibrillary tangles and neuropil threads. Phosphorylation at tau Ser202/Thr205 is well characterized since labeling of this site is used to assign Braak stage based on occurrence of neurofibrillary tangles. Only little is known about the spatial and temporal phosphorylation profile of other phosphorylated tau (ptau) sites. Here, we investigate total tau and ptau at residues Tyr18, Ser199, Ser202/Thr205, Thr231, Ser262, Ser396, Ser422 as well as amyloid-ß plaques in human brain tissue of AD patients and controls. Allo- and isocortical brain regions were evaluated applying rater-independent automated quantification based on digital image analysis. We found that the level of ptau at several residues, like Ser199, Ser202/Thr205, and Ser422 was similar in healthy controls and Braak stages I to IV but was increased in Braak stage V/VI throughout the entire isocortex and transentorhinal cortex. Quantification of ThioS-stained plaques showed a similar pattern. Only tau phosphorylation at Tyr18 and Thr231 was already significantly increased in the transentorhinal region at Braak stage III/IV and hence showed a progressive increase with increasing Braak stages. Additionally, the increase in phosphorylation relative to controls was highest at Tyr18, Thr231 and Ser199. By contrast, Ser396 tau and Ser262 tau showed only a weak phosphorylation in all analyzed brain regions and only minor progression. Our results suggest that the ptau burden in the isocortex is comparable between all analyzed ptau sites when using a quantitative approach while levels of ptau at Tyr18 or Thr231 in the transentorhinal region are different between all Braak stages. Hence these sites could be crucial in the pathogenesis of AD already at early stages and therefore represent putative novel therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Encéfalo/metabolismo , Progresión de la Enfermedad , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Escalas de Valoración Psiquiátrica , Serina/metabolismo , Estadísticas no Paramétricas , Treonina/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...