Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 11(8): 706-12, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27159740

RESUMEN

A range of artificial molecular systems has been created that can exhibit controlled linear and rotational motion. In the further development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching when applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above 1 V at 80 K. The phenomenon is observed only in a hexagonal rotor network due to the degeneracy of the ground-state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur, resulting in the rotator arms pointing in different directions. Analysis reveals that the rotator arm directions are not random, but are coordinated to minimize energy via crosstalk among the rotors through dipolar interactions.

2.
Nat Nanotechnol ; 8(1): 46-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23263725

RESUMEN

The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA