Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Commun Signal ; 17(3): 1105-1111, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37014471

RESUMEN

Trophoblast cell surface antigen 2 (TROP2) is a calcium-transducing transmembrane protein mainly involved in embryo development. The aberrant expression of TROP2 is observed in numerous cancers, including triple-negative breast cancer, gastric, colorectal, pancreatic, squamous cell carcinoma of the oral cavity, and prostate cancers. The main signaling pathways mediated by TROP2 are calcium signaling, PI3K/AKT, JAK/STAT, MAPKs, and ß-catenin signaling. However, collective information about the TROP2-mediated signaling pathway is not available for visualization or analysis. In this study, we constructed a TROP2 signaling map with respect to its role in different cancers. The data curation was done manually by following the NetPath annotation criteria. The described map consists of different molecular events, including 8 activation/inhibition, 16 enzyme catalysis, 19 gene regulations, 12 molecular associations, 39 induced-protein expressions, and 2 protein translocation. The data of the TROP2 pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5300 ). Development of TROP2 signaling pathway map.

2.
J Cell Commun Signal ; 17(3): 1097-1104, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36944905

RESUMEN

Cytoskeleton-associated protein 4 (CKAP4) is a non-glycosylated type II transmembrane protein that serves as a cell surface-activated receptor. It is expressed primarily in the plasma membranes of bladder epithelial cells, type II alveolar pneumocytes, and vascular smooth muscle cells. CKAP4 is involved in various biological activities including cell proliferation, cell migration, keratinocyte differentiation, glycogenesis, fibrosis, thymic development, cardiogenesis, neuronal apoptosis, and cancer. CKAP4 has been described as a pro-tumor molecule that regulates the progression of various cancers, including lung cancer, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, cervical cancer, oral cancer, bladder cancer, cholangiocarcinoma, pancreatic cancer, myeloma, renal cell carcinoma, melanoma, squamous cell carcinoma, colorectal cancer, and osteosarcoma. CKAP4 and its isoform bind to DKK1 or DKK3 (Dickkopf proteins) or antiproliferative factor (APF) and regulates several downstream signaling cascades. The CKAP4 complex plays a crucial role in regulating the signaling pathways including PI3K/AKT and MAPK1/3. Recently, CKAP4 has been recognized as a potential target for cancer therapy. Due to its biomedical importance, we integrated a network map of CKAP4. The available literature on CKAP4 signaling was manually curated according to the NetPath annotation criteria. The consolidated pathway map comprises 41 activation/inhibition events, 21 catalysis events, 35 molecular associations, 134 gene regulation events, 83 types of protein expression, and six protein translocation events. CKAP4 signaling pathway map data is freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5322 ). Generation of CKAP4 signaling pathway map.

3.
J Cell Commun Signal ; 17(1): 217-227, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36480100

RESUMEN

Orexins are excitatory neuropeptides, which are predominantly associated with feeding behavior, sleep-wake cycle and energy homeostasis. The orexinergic system comprises of HCRTR1 and HCRTR2, G-protein-coupled receptors of rhodopsin family and the endogenous ligands processed from HCRT pro-hormone, Orexin A and Orexin B. These neuropeptides are biosynthesized by the orexin neurons present in the lateral hypothalamus area, with dense projections to other brain regions. The orexin-receptor signaling is implicated in various metabolic as well as neurological disorders, making it a promising target for pharmacological interventions. However, there is limited information available on the collective representation of the signal transduction pathways pertaining to the orexin-orexin receptor signaling system. Here, we depict a compendium of the Orexin A/B stimulated reactions in the form of a basic signaling pathway map. This map catalogs the reactions into five categories: molecular association, activation/inhibition, catalysis, transport, and gene regulation. A total of 318 downstream molecules were annotated adhering to the guidelines of NetPath curation. This pathway map can be utilized for further assessment of signaling events associated with orexin-mediated physiological functions and is freely available on WikiPathways, an open-source pathway database ( https://www.wikipathways.org/index.php/Pathway:WP5094 ).

4.
J Cell Commun Signal ; 16(2): 301-310, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34714516

RESUMEN

Bradykinin, a member of the kallikrein-kinin system (KKS), is associated with an inflammatory response pathway with diverse vascular permeability functions, including thrombosis and blood coagulation. In majority, bradykinin signals through Bradykinin Receptor B2 (B2R). B2R is a G protein-coupled receptor (GPCR) coupled to G protein family such as Gαqs, Gαq/Gα11, Gαi1, and Gß1γ2. B2R stimulation leads to the activation of a signaling cascade of downstream molecules such as phospholipases, protein kinase C, Ras/Raf-1/MAPK, and PI3K/AKT and secondary messengers such as inositol-1,4,5-trisphosphate, diacylglycerol and Ca2+ ions. These secondary messengers modulate the production of nitric oxide or prostaglandins. Bradykinin-mediated signaling is implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. Despite the biomedical importance of bradykinin, a resource of bradykinin-mediated signaling pathway is currently not available. Here, we developed a pathway resource of signaling events mediated by bradykinin. By employing data mining strategies in the published literature, we describe an integrated pathway reaction map of bradykinin consisting of 233 reactions. Bradykinin signaling pathway events included 25 enzyme catalysis reactions, 12 translocations, 83 activation/inhibition reactions, 11 molecular associations, 45 protein expression and 57 gene regulation events. The pathway map is made publicly available on the WikiPathways Database with the ID URL: https://www.wikipathways.org/index.php/Pathway:WP5132 . The bradykinin-mediated signaling pathway map will facilitate the identification of novel candidates as therapeutic targets for diseases associated with dysregulated bradykinin signaling.

5.
J Cell Commun Signal ; 16(1): 137-143, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33797707

RESUMEN

The apelin receptor (APLNR) is a class A (rhodopsin-like) G-protein coupled receptor with a wide distribution throughout the human body. Activation of the apelin/APLNR system regulates AMPK/PI3K/AKT/mTOR and RAF/ERK1/2 mediated signaling pathways. APLNR activation orchestrates several downstream signaling cascades, which play diverse roles in physiological effects, including effects upon vasoconstriction, heart muscle contractility, energy metabolism regulation, and fluid homeostasis angiogenesis. We consolidated a network map of the APLNR signaling map owing to its biomedical importance. The curation of literature data pertaining to the APLNR system was performed manually by the NetPath criteria. The described apelin receptor signaling map comprises 35 activation/inhibition events, 38 catalysis events, 4 molecular associations, 62 gene regulation events, 113 protein expression types, and 4 protein translocation events. The APLNR signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5067 ).

6.
Indian J Ophthalmol ; 69(3): 647-654, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33595494

RESUMEN

Purpose: Age-related macular degeneration (AMD) is one of the leading causes of irreversible central vision loss in the elderly population. The current study aims to find non-invasive prognostic biomarkers in the urine specimens of the AMD patients. Methods: Peripheral blood and urine samples were collected from 23 controls and 61 AMD patients. Genomic DNA was extracted from the buffy coat of peripheral blood. Allele specific PCR was used to assay SNPs in complement factor H (CFH), complement component 3 (C3). Comparative proteomic analysis of urine samples from early AMD, choroidal neovascular membrane (CNVM), geographic atrophy (GA), and healthy controls was performed using isobaric labelling followed by mass spectrometry. Validation was performed using enzyme-linked immunosorbent assay (ELISA). Results: Comparative proteomic analysis of urine samples identified 751 proteins, of which 383 proteins were found to be differentially expressed in various groups of AMD patients. Gene ontology classification of differentially expressed proteins revealed the majority of them were involved in catalytic functions and binding activities. Pathway analysis showed cell adhesion molecule pathways (CAMs), Complement and coagulation cascades, to be significantly deregulated in AMD. Upon validation by ELISA, SERPINA-1 (Alpha1 antitrypsin), TIMP-1 (Tissue inhibitor of matrix metaloprotease-1), APOA-1 (Apolipoprotein A-1) were significantly over-expressed in AMD (n = 61) patients compared to controls (n = 23). A logistic model of APOA-1 in combination with CFH and C3 polymorphisms predicted the risk of developing AMD with 82% accuracy. Conclusion: This study gives us a preliminary data on non-invasive predictive biomarkers for AMD, which can be further validated in a large cohort and translated for diagnostic use.


Asunto(s)
Degeneración Macular , Proteómica , Anciano , Estudios de Casos y Controles , Diferenciación Celular , Genotipo , Humanos , Degeneración Macular/diagnóstico , Degeneración Macular/genética , Polimorfismo de Nucleótido Simple
7.
Sci Rep ; 11(1): 2831, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531582

RESUMEN

The milk and milk products from cows reared under grazing system are believed to be healthier and hence have high demand compared to milk from cows reared in the non-grazing system. However, the effect of grazing on milk metabolites, specifically lipids has not been fully understood. In this study, we used acetonitrile precipitation and methanol:chloroform methods for extracting the milk metabolites followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) run to identify the different metabolites between the milk of grazing and non-grazing early lactating Malnad Gidda cows. Various carbohydrates, amino acids, nucleosides and vitamin derivatives were found to be differentially abundant in grazing cows. A total of 35 metabolites were differentially regulated (fold change above 1.5) between the two groups. Tyrosyl-threonine, histidinyl-cysteine, 1-methyladenine, L-cysteine and selenocysteine showed fold change above 3 in grazing cows. The lipid profile of milk showed a lesser difference between grazing and non-grazing cows as compared to polar metabolites. To the best of our knowledge, this is the largest inventory of milk metabolomics data of an Indian cattle (Bos indicus) breed. We believe that our study would help to emerge a field of Nutri-metabolomics and veterinary omics research.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Industria Lechera/métodos , Conducta Alimentaria/fisiología , Leche/química , Animales , Bovinos , Femenino , India , Metabolómica/métodos , Leche/metabolismo
8.
J Cell Commun Signal ; 15(2): 269-275, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33136286

RESUMEN

The galanin receptor family of proteins is present throughout the central nervous system and endocrine system. It comprises of three subtypes-GalR1, GalR2, and GalR3; all of which are G-protein-coupled receptors. Galanin predominantly acts as an inhibitory, hyper-polarizing neuromodulator, which has several physiological as well as pathological functions. Galanin has a role in mediating food intake, memory, sexual behavior, nociception and is also associated with diseases such as Alzheimer's disease, epilepsy, diabetes mellitus, and chronic pain. However, the understanding of signaling mechanisms of the galanin family of neuropeptides is limited and an organized pathway map is not yet available. Therefore, a detailed literature mining of the publicly available articles pertaining to the galanin receptor was followed by manual curation of the reactions and their integration into a map. This resulted in the cataloging of molecular reactions involving 64 molecules into five categories such as molecular association, activation/inhibition, catalysis, transport, and gene regulation. For enabling easy access of biomedical researchers, the galanin-galanin receptor signaling pathway data was uploaded to WikiPathways ( https://www.wikipathways.org/index.php/Pathway:WP4970 ), a freely available database of biological pathways.

9.
J Proteomics ; 211: 103556, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31655151

RESUMEN

Analysis of human muscle diseases highlights the role of mitochondrial dysfunction in the skeletal muscle. Our previous work revealed that diverse upstream events correlated with altered mitochondrial proteome in human muscle biopsies. However, several proteins showed relatively unchanged expression suggesting that post-translational modifications, mainly protein phosphorylation could influence their activity and regulate mitochondrial processes. We conducted mitochondrial phosphoprotein profiling, by proteomics approach, of healthy human skeletal muscle (n = 10) and three muscle diseases (n = 10 each): Dysferlinopathy, Polymyositis and Distal Myopathy with Rimmed Vacuoles. Healthy human muscle mitochondrial proteins displayed 253 phosphorylation sites (phosphosites), which contributed to metabolic and redox processes and mitochondrial organization etc. Electron transport chain complexes accounted for 84 phosphosites. Muscle pathologies displayed 33 hyperphosphorylated and 14 hypophorphorylated sites with only 5 common proteins, indicating varied phosphorylation profile across muscle pathologies. Molecular modelling revealed altered local structure in the phosphorylated sites of Voltage-Dependent Anion Channel 1 and complex V subunit ATP5B1. Molecular dynamics simulations in complex I subunits NDUFV1, NDUFS1 and NDUFV2 revealed that phosphorylation induced structural alterations thereby influencing electron transfer and potentially altering enzyme activity. We propose that altered phosphorylation at specific sites could regulate mitochondrial protein function in the skeletal muscle during physiological and pathological processes.


Asunto(s)
Proteínas Mitocondriales , Músculo Esquelético , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosforilación
10.
Sci Rep ; 9(1): 18793, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827134

RESUMEN

Epidermal growth factor receptor (EGFR) targeted therapies have shown limited efficacy in head and neck squamous cell carcinoma (HNSCC) patients despite its overexpression. Identifying molecular mechanisms associated with acquired resistance to EGFR-TKIs such as erlotinib remains an unmet need and a therapeutic challenge. In this study, we employed an integrated multi-omics approach to delineate mechanisms associated with acquired resistance to erlotinib by carrying out whole exome sequencing, quantitative proteomic and phosphoproteomic profiling. We observed amplification of several genes including AXL kinase and transcription factor YAP1 resulting in protein overexpression. We also observed expression of constitutively active mutant MAP2K1 (p.K57E) in erlotinib resistant SCC-R cells. An integrated analysis of genomic, proteomic and phosphoproteomic data revealed alterations in MAPK pathway and its downstream targets in SCC-R cells. We demonstrate that erlotinib-resistant cells are sensitive to MAPK pathway inhibition. This study revealed multiple genetic, proteomic and phosphoproteomic alterations associated with erlotinib resistant SCC-R cells. Our data indicates that therapeutic targeting of MAPK pathway is an effective strategy for treating erlotinib-resistant HNSCC tumors.


Asunto(s)
Antineoplásicos/uso terapéutico , Clorhidrato de Erlotinib/uso terapéutico , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal , Genómica , Humanos , Redes y Vías Metabólicas , Fenotipo , Proteómica , Carcinoma de Células Escamosas de Cabeza y Cuello/enzimología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA