Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 2084, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483553

RESUMEN

The fusion power density produced in a tokamak is proportional to its magnetic field strength to the fourth power. Second-generation high temperature superconductor (2G HTS) wires demonstrate remarkable engineering current density (averaged over the full wire), JE, at very high magnetic fields, driving progress in fusion and other applications. The key challenge for HTS wires has been to offer an acceptable combination of high and consistent superconducting performance in high magnetic fields, high volume supply, and low price. Here we report a very high and reproducible JE in practical HTS wires based on a simple YBa2Cu3O7 (YBCO) superconductor formulation with Y2O3 nanoparticles, which have been delivered in just nine months to a commercial fusion customer in the largest-volume order the HTS industry has seen to date. We demonstrate a novel YBCO superconductor formulation without the c-axis correlated nano-columnar defects that are widely believed to be prerequisite for high in-field performance. The simplicity of this new formulation allows robust and scalable manufacturing, providing, for the first time, large volumes of consistently high performance wire, and the economies of scale necessary to lower HTS wire prices to a level acceptable for fusion and ultimately for the widespread commercial adoption of HTS.

2.
Rev Sci Instrum ; 85(2): 023503, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593357

RESUMEN

A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA