Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 91(3): 034504, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259966

RESUMEN

Plants represent an essential part of future life support systems that will enable human space travel to distant planets and their colonization. Therefore, insights into changes and adaptations of plants in microgravity are of great importance. Despite considerable efforts, we still know very little about how plants respond to microgravity environments on the molecular level, partly due to a lack of sufficient hardware and flight opportunities. The plant Arabidopsis thaliana, the subject of this study, represents a well-studied model organism in gravitational biology, particularly for the analysis of transcriptional and metabolic changes. To overcome the limitations of previous plant hardware that often led to secondary effects and to allow for the extraction not only of RNA but also of phytohormones and proteins, we developed a new experimental platform, called ARABIDOMICS, for exposure and fixation under altered gravity conditions. Arabidopsis seedlings were exposed to hypergravity during launch and microgravity during the free-fall period of the MAPHEUS 5 sounding rocket. Seedlings were chemically fixed inflight at defined time points, and RNA and phytohormones were subsequently analyzed in the laboratory. RNA and phytohormones extracted from the fixed biological samples were of excellent quality. Changes in the phytohormone content of jasmonate, auxin, and several cytokinins were observed in response to hypergravity and microgravity.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hipergravedad , Fitocromo/metabolismo , ARN de Planta/metabolismo , Plantones/crecimiento & desarrollo , Ingravidez , Vuelo Espacial
2.
Nat Commun ; 7: 13188, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27786272

RESUMEN

ß-glucans are well-known modulators of the immune system in mammals but little is known about ß-glucan triggered immunity in planta. Here we show by isothermal titration calorimetry, circular dichroism spectroscopy and nuclear magnetic resonance spectroscopy that the FGB1 gene from the root endophyte Piriformospora indica encodes for a secreted fungal-specific ß-glucan-binding lectin with dual function. This lectin has the potential to both alter fungal cell wall composition and properties, and to efficiently suppress ß-glucan-triggered immunity in different plant hosts, such as Arabidopsis, barley and Nicotiana benthamiana. Our results hint at the existence of fungal effectors that deregulate innate sensing of ß-glucan in plants.


Asunto(s)
Basidiomycota/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Lectinas/metabolismo , beta-Glucanos/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Basidiomycota/fisiología , Proteínas Fúngicas/inmunología , Hordeum/inmunología , Hordeum/microbiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Lectinas/inmunología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/inmunología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Unión Proteica , Nicotiana/inmunología , Nicotiana/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...