Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113939, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38493476

RESUMEN

Morphogens are important triggers for differentiation processes. Yet, downstream effectors that organize cell shape changes in response to morphogenic cues, such as retinoic acid, largely remain elusive. Additionally, derailed plasma membrane-derived signaling often is associated with cancer. We identify Ankrd26 as a critical player in cellular differentiation and as plasma membrane-localized protein able to self-associate and form clusters at the plasma membrane in response to retinoic acid. We show that Ankrd26 uses an N-terminal amphipathic structure for membrane binding and bending. Importantly, in an acute myeloid leukemia-associated Ankrd26 mutant, this critical structure was absent, and Ankrd26's membrane association and shaping abilities were impaired. In line with this, the mutation rendered Ankrd26 inactive in both gain-of-function and loss-of-function/rescue studies addressing retinoic acid/brain-derived neurotrophic factor (BDNF)-induced neuroblastoma differentiation. Our results highlight the importance and molecular details of Ankrd26-mediated organizational platforms for cellular differentiation at the plasma membrane and how impairment of these platforms leads to cancer-associated pathomechanisms involving these Ankrd26 properties.


Asunto(s)
Leucemia Mieloide Aguda , Tretinoina , Humanos , Diferenciación Celular , Tretinoina/farmacología , Tretinoina/metabolismo , Transducción de Señal , Membrana Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo
2.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37318382

RESUMEN

Membrane-shaping proteins are driving forces behind establishment of proper cell morphology and function. Yet, their reported structural and in vitro properties are noticeably inconsistent with many physiological membrane topology requirements. We demonstrate that dendritic arborization of neurons is powered by physically coordinated shaping mechanisms elicited by members of two distinct classes of membrane shapers: the F-BAR protein syndapin I and the N-Ank superfamily protein ankycorbin. Strikingly, membrane-tubulating activities by syndapin I, which would be detrimental during dendritic branching, were suppressed by ankycorbin. Ankycorbin's integration into syndapin I-decorated membrane surfaces instead promoted curvatures and topologies reflecting those observed physiologically. In line with the functional importance of this mechanism, ankycorbin- and syndapin I-mediated functions in dendritic arborization mutually depend on each other and on a surprisingly specific interface mediating complex formation of the two membrane shapers. These striking results uncovered cooperative and interdependent functions of members of two fundamentally different membrane shaper superfamilies as a previously unknown, pivotal principle in neuronal shape development.


Asunto(s)
Proteínas de la Membrana , Neuronas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas , Neuronas/metabolismo , Proteínas del Citoesqueleto/metabolismo
3.
Nat Cell Biol ; 21(10): 1191-1205, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548610

RESUMEN

Cells of multicellular organisms need to adopt specific morphologies. However, the molecular mechanisms bringing about membrane topology changes are far from understood-mainly because knowledge of membrane-shaping proteins that can promote local membrane curvatures is still limited. Our analyses unveiled that several members of a large, previously unrecognised protein family, which we termed N-Ank proteins, use a combination of their ankyrin repeat array and an amino (N)-terminal amphipathic helix to bind and shape membranes. Consistently, functional analyses revealed that the N-Ank protein ankycorbin (NORPEG/RAI14), which was exemplarily characterised further, plays an important, ankyrin repeat-based and N-terminal amphipathic helix-dependent role in early morphogenesis of neurons. This function furthermore required coiled coil-mediated self-assembly and manifested as ankycorbin nanodomains marked by protrusive membrane topologies. In summary, here, we unveil a class of powerful membrane shapers and thereby assign mechanistic and cell biological functions to the N-Ank protein superfamily.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Morfogénesis , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Repetición de Anquirina/genética , Células Cultivadas , Proteínas del Citoesqueleto/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Moleculares , Neuronas/citología , Neuronas/metabolismo , Dominios Proteicos/genética , Ratas , Factores de Transcripción/genética
4.
Dev Cell ; 45(2): 262-275.e8, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689199

RESUMEN

The complex architecture of neuronal networks in the brain requires tight control of the actin cytoskeleton. The actin nucleator Cobl is critical for neuronal morphogenesis. Here we reveal that Cobl is controlled by arginine methylation. Coprecipitations, coimmunoprecipitations, cellular reconstitutions, and in vitro reconstitutions demonstrated that Cobl associates with the protein arginine methyltransferase PRMT2 in a Src Homology 3 (SH3) domain-dependent manner and that this promotes methylation of Cobl's actin nucleating C-terminal domain. Consistently, PRMT2 phenocopied Cobl functions in both gain- and loss-of-function studies. Both PRMT2- and Cobl-promoted dendritogenesis relied on methylation. PRMT2 effects require both its catalytic domain and SH3 domain. Cobl-mediated dendritic arborization required PRMT2, complex formation with PRMT2, and PRMT2's catalytic activity. Mechanistic studies reveal that Cobl methylation is key for Cobl actin binding. Therefore, arginine methylation is a regulatory mechanism reaching beyond controlling nuclear processes. It also controls a major, cytosolic, cytoskeletal component shaping neuronal cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Arginina/metabolismo , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto , Femenino , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Neuronas/citología , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/genética , Proteínas/genética , Ratas , Ratas Wistar , Técnicas del Sistema de Dos Híbridos
5.
EMBO J ; 30(24): 4955-69, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21926968

RESUMEN

Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.


Asunto(s)
Neuronas/fisiología , Neuropéptidos/fisiología , Fosfoproteínas/fisiología , Vesículas Sinápticas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Dinaminas/metabolismo , Endocitosis , Hipocampo/fisiopatología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Neuronas/ultraestructura , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Retina/fisiología , Retina/ultraestructura , Células Fotorreceptoras Retinianas Bastones/fisiología , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Convulsiones/genética , Transmisión Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestructura
6.
EMBO J ; 30(17): 3501-15, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21878992

RESUMEN

Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.


Asunto(s)
Endocitosis/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Clatrina/química , Clatrina/metabolismo , Humanos , Proteínas de la Membrana/química , Ratones , Proteínas del Tejido Nervioso/química , Estructura Terciaria de Proteína , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
7.
Eur J Cell Biol ; 90(11): 926-33, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20965607

RESUMEN

Coordinated functions of the actin cytoskeleton and microtubules, which need to be carefully controlled in time and space, are required for the drastic alterations of neuronal morphology during neuromorphogenesis and neuronal network formation. A key process in neuronal actin dynamics is filament formation by actin nucleators, such as the Arp2/3 complex, formins and the brain-enriched, novel WH2 domain-based nucleators Spire and cordon-bleu (Cobl). We here discuss in detail the currently available data on the roles of these actin nucleators during neuromorphogenesis and highlight how their required control at the plasma membrane may be brought about. The Arp2/3 complex was found to be especially important for proper growth cone translocation and axon development. The underlying molecular mechanisms for Arp2/3 complex activation at the neuronal plasma membrane include a recruitment and an activation of N-WASP by lipid- and F-actin-binding adaptor proteins, Cdc42 and phosphatidyl-inositol-(4,5)-bisphosphate (PIP(2)). Together, these components upstream of N-WASP and the Arp2/3 complex ensure fine-control of N-WASP-mediated Arp2/3 complex activation and control distinct functions during axon development. They are counteracted by Arp2/3 complex inhibitors, such as PICK, which likewise play an important role in neuromorphogenesis. In contrast to the crucial role of the Arp2/3 complex in proper axon development, dendrite formation and dendritic arborization was revealed to critically involve the newly identified actin nucleator Cobl. Cobl is a brain-enriched protein and uses three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding and for promoting the formation of non-bundled, unbranched filaments. Thus, cells use different actin nucleators to steer the complex remodeling processes underlying cell morphogenesis, the formation of cellular networks and the development of complex body plans.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Animales , Transporte Biológico , Humanos , Microtúbulos/metabolismo
8.
J Neurosci ; 29(42): 13315-27, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19846719

RESUMEN

Coordinated functions of the actin cytoskeleton and microtubules, which require careful control in time and space, are indispensable for the drastic alterations of neuronal morphology during neuromorphogenesis and neuronal network formation. Actin filament formation driven by the Arp2/3 complex and its activator neural Wiskott-Aldrich syndrome protein (N-WASP) is important for proper axon development. The underlying molecular mechanisms for targeting to and specific activation of N-WASP at the neuronal plasma membrane, however, have thus far remained elusive. We show that syndapin I is critical for proper neuromorphogenesis and hereby uses N-WASP as a cytoskeletal effector. Upon N-WASP binding, syndapins release N-WASP autoinhibition. Syndapins hereby cooperate with Cdc42 and phosphatidyl-inositol-(4,5)-bisphosphate. Syndapins furthermore specifically bind to phosphatidylserine-containing membranes via their extended F-BAR domain. Dissecting the syndapin functions actin nucleation and direct membrane binding in vivo, we demonstrate that both functions are physiologically relevant and required. Constitutive plasma membrane-targeting experiments in vivo indicate that specifically actin nucleation at the cell cortex is triggered by syndapins. Consistent with syndapins steering N-WASP as downstream effector for cortical actin nucleation, syndapin-induced neuronal arborization is N-WASP and Cdc42 dependent. The functions of syndapin-N-WASP complexes in neuromorphogenesis were revealed by loss-of-function studies. Knockdown of syndapin I leads to impaired axon development and especially phenocopies the aberrant axon branching observed upon N-WASP and Arp2/3 complex deficiency. In contrast, proper length control involves another N-WASP-binding protein, Abp1. Our data thus reveal that syndapin I is crucial for neuromorphogenesis and that different N-WASP activators ensure fine control of N-WASP activity and have distinct functions during neuronal network formation.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/fisiología , Neuronas/citología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Animales , Animales Recién Nacidos , Proteínas Portadoras/química , Línea Celular Transformada , Chlorocebus aethiops , Secuencia Conservada , Proteínas del Citoesqueleto , Dendritas/fisiología , Embrión de Mamíferos , Endocitosis/genética , Endosomas/metabolismo , Hipocampo/citología , Humanos , Liposomas , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Fracciones Subcelulares/metabolismo , Transfección/métodos , Proteína de Unión al GTP cdc42/metabolismo
9.
PLoS One ; 2(5): e400, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17476322

RESUMEN

Polymerization and organization of actin filaments into complex superstructures is indispensable for structure and function of neuronal networks. We here report that knock down of the F-actin-binding protein Abp1, which is important for endocytosis and synaptic organization, results in changes in axon development virtually identical to Arp2/3 complex inhibition, i.e., a selective increase of axon length. Our in vitro and in vivo experiments demonstrate that Abp1 interacts directly with N-WASP, an activator of the Arp2/3 complex, and releases the autoinhibition of N-WASP in cooperation with Cdc42 and thereby promotes N-WASP-triggered Arp2/3 complex-mediated actin polymerization. In line with our mechanistical studies and the colocalization of Abp1, N-WASP and Arp2/3 at sites of actin polymerization in neurons, we reveal an essential role of Abp1 and its cooperativity with Cdc42 in N-WASP-induced rearrangements of the neuronal cytoskeleton. We furthermore show that introduction of N-WASP mutants lacking the ability to bind Abp1 or Cdc42, Arp2/3 complex inhibition, Abp1 knock down, N-WASP knock down and Arp3 knock down, all cause identical neuromorphological phenotypes. Our data thus strongly suggest that these proteins and their complex formation are important for cytoskeletal processes underlying neuronal network formation.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/fisiología , Amina Oxidasa (conteniendo Cobre)/fisiología , Proteína Neuronal del Síndrome de Wiskott-Aldrich/fisiología , Animales , Axones , Secuencia de Bases , Línea Celular , Cartilla de ADN , Humanos , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA