Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Sci Transl Med ; 12(541)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350131

RESUMEN

Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in the nuclei of patients' cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiology of the condition. Here, we report small-molecule inhibitors that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clinical trials for other indications and provide valuable starting points for a drug development program in DM1.


Asunto(s)
Distrofia Miotónica , Animales , Quinasas Ciclina-Dependientes , Modelos Animales de Enfermedad , Humanos , Ratones , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , ARN , Empalme del ARN/genética , Expansión de Repetición de Trinucleótido/genética
3.
J Mol Cell Cardiol ; 114: 185-198, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29174768

RESUMEN

TBX5 plays a critical role in heart and forelimb development. Mutations in TBX5 cause Holt-Oram syndrome, an autosomal dominant condition that affects the formation of the heart and upper-limb. Several studies have provided significant insight into the role of TBX5 in cardiogenesis; however, how TBX5 activity is regulated by other factors is still unknown. Here we report that histone acetyltransferases KAT2A and KAT2B associate with TBX5 and acetylate it at Lys339. Acetylation potentiates its transcriptional activity and is required for nuclear retention. Morpholino-mediated knockdown of kat2a and kat2b transcripts in zebrafish severely perturb heart and limb development, mirroring the tbx5a knockdown phenotype. The phenotypes found in MO-injected embryos were also observed when we introduced mutations in the kat2a or kat2b genes using the CRISPR-Cas system. These studies highlight the importance of KAT2A and KAT2B modulation of TBX5 and their impact on heart and limb development.


Asunto(s)
Extremidades/embriología , Corazón/embriología , Histona Acetiltransferasas/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Acetilación , Secuencia de Aminoácidos , Aletas de Animales/embriología , Animales , Sistemas CRISPR-Cas/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Corazón/efectos de los fármacos , Histona Acetiltransferasas/genética , Morfolinos/farmacología , Fenotipo , Proteínas de Dominio T Box/química , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Nat Genet ; 48(9): 1060-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479907

RESUMEN

Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD.


Asunto(s)
Autoantígenos/genética , Proteína Quinasa CDC2/genética , Cardiopatías Congénitas/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Mutación/genética , Proteína Quinasa C/genética , Proteína Quinasa CDC2/química , Exoma/genética , Femenino , Humanos , Masculino , Conformación Proteica , Eliminación de Secuencia , Síndrome
5.
Hum Mol Genet ; 23(6): 1551-62, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24179176

RESUMEN

Myotonic dystrophy (DM) is a multi-system neuromuscular disorder for which there is no treatment. We have developed a medium throughput phenotypic assay, based on the identification of nuclear foci in DM patient cell lines using in situ hybridization and high-content imaging to screen for potentially useful therapeutic compounds. A series of further assays based on molecular features of DM have also been employed. Two compounds that reduce and/or remove nuclear foci have been identified, Ro 31-8220 and chromomycin A3. Ro 31-8220 is a PKC inhibitor, previously shown to affect the hyperphosphorylation of CELF1 and ameliorate the cardiac phenotype in a DM1 mouse model. We show that the same compound eliminates nuclear foci, reduces MBNL1 protein in the nucleus, affects ATP2A1 alternative splicing and reduces steady-state levels of CELF1 protein. We demonstrate that this effect is independent of PKC activity and conclude that this compound may be acting on alternative kinase targets within DM pathophysiology. Understanding the activity profile for this compound is key for the development of targeted therapeutics in the treatment of DM.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Cromomicina A3/farmacología , Indoles/farmacología , Distrofia Miotónica/patología , Proteínas de Unión al ARN/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Empalme Alternativo , Animales , Proteínas CELF1 , Núcleo Celular/patología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Biblioteca de Péptidos , Proteínas de Unión al ARN/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal/efectos de los fármacos , Pez Cebra
6.
PLoS One ; 8(6): e65170, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23755189

RESUMEN

The importance of microRNAs in development is now widely accepted. However, identifying the specific targets of individual microRNAs and understanding their biological significance remains a major challenge. We have used the zebrafish model system to evaluate the expression and function of microRNAs potentially involved in muscle development and study their interaction with predicted target genes. We altered expression of the miR-30 microRNA family and generated phenotypes that mimicked misregulation of the Hedgehog pathway. Inhibition of the miR-30 family increases activity of the pathway, resulting in elevated ptc1 expression and increased numbers of superficial slow-muscle fibres. We show that the transmembrane receptor smoothened is a target of this microRNA family. Our results indicate that fine coordination of smoothened activity by the miR-30 family allows the correct specification and differentiation of distinct muscle cell types during zebrafish embryonic development.


Asunto(s)
Proteínas Hedgehog/metabolismo , MicroARNs/genética , Desarrollo de Músculos/genética , Receptores Acoplados a Proteínas G/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Sitios de Unión , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana , Músculo Esquelético/citología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Receptores Patched , Receptor Patched-1 , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Receptor Smoothened , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Congenit Heart Dis ; 7(2): 151-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22011241

RESUMEN

Background. Variants of several genes encoding transcription modulators, signal transduction, and structural proteins are known to cause Mendelian congenital heart disease (CHD). NKX2-5 and GATA4 were the first CHD-causing genes identified by linkage analysis in large affected families. Mutations of TBX5 cause Holt-Oram syndrome, which includes CHD as a clinical feature. All three genes have a well-established role in cardiac development. Design. In order to investigate the possible role of multiple mutations in CHD, a combined mutation screening was performed in NKX2-5, GATA4, and TBX5 in the same patient cohort. Samples from a cohort of 331 CHD patients were analyzed by polymerase chain reaction, double high-performance liquid chromatography and sequencing in order to identify changes in the NKX2-5, GATA4, and TBX5 genes. Results. Two cases of multiple heterozygosity of putative disease-causing mutations were identified. One patient was found with a novel L122P NKX2-5 mutation in combination with the private A1443D mutation of MYH6. A patient heterozygote for a D425N GATA4 mutation carries also a private mutation of the MYH6 gene (V700M). Conclusions. In addition to reporting two novel mutations of NKX2-5 in CHD, we describe families where multiple individual mutations seem to have an additive effect over the pathogenesis of CHD. Our findings highlight the usefulness of multiple gene mutational analysis of large CHD cohorts.


Asunto(s)
Factor de Transcripción GATA4/genética , Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Miosinas Cardíacas/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Heterocigoto , Proteína Homeótica Nkx-2.5 , Humanos , Cadenas Pesadas de Miosina/genética , Mutación Puntual/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...