Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1004, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813791

RESUMEN

The dorsolateral striatum (DLS) receives excitatory inputs from both sensory and motor cortical regions. In the neocortex, sensory responses are affected by motor activity, however, it is not known whether such sensorimotor interactions occur in the striatum and how they are shaped by dopamine. To determine the impact of motor activity on striatal sensory processing, we performed in vivo whole-cell recordings in the DLS of awake mice during the presentation of tactile stimuli. Striatal medium spiny neurons (MSNs) were activated by both whisker stimulation and spontaneous whisking, however, their responses to whisker deflection during ongoing whisking were attenuated. Dopamine depletion reduced the representation of whisking in direct-pathway MSNs, but not in those of the indirect-pathway. Furthermore, dopamine depletion impaired the discrimination between ipsilateral and contralateral sensory stimulation in both direct and indirect pathway MSNs. Our results show that whisking affects sensory responses in DLS and that striatal representation of both processes is dopamine- and cell type-dependent.


Asunto(s)
Cuerpo Estriado , Dopamina , Ratones , Animales , Dopamina/fisiología , Cuerpo Estriado/fisiología , Neostriado , Tacto/fisiología
2.
Cell Rep ; 42(1): 111952, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640317

RESUMEN

Sensory processing is crucial for execution of appropriate behavior. The external globus pallidus (GPe), a nucleus within the basal ganglia, is highly involved in the control of movement and could potentially integrate sensory-motor information. The GPe comprises prototypic and arkypallidal cells, which receive partially overlapping inputs. It is unclear, however, which inputs convey sensory information to them. Here, we used in vivo whole-cell recordings in the mouse GPe and optogenetic silencing to characterize the pathways that shape the response to whisker stimulation in prototypic and arkypallidal cells. Our results show that sensory integration in prototypic cells is controlled by the subthalamic nucleus and indirect pathway medium spiny neurons (MSNs), whereas in arkypallidal cells, it is primarily shaped by direct pathway MSNs. These results suggest that GPe subpopulations receive sensory information from largely different neural populations, reinforcing that the GPe consists of two parallel pathways, which differ anatomically and functionally.


Asunto(s)
Globo Pálido , Núcleo Subtalámico , Ratones , Animales , Globo Pálido/metabolismo , Neuronas/metabolismo , Ganglios Basales/fisiología , Percepción , Vías Nerviosas/fisiología
3.
Neuron ; 109(3): 516-529.e4, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33248017

RESUMEN

The rodent external globus pallidus (GPe) contains two main neuronal subpopulations, prototypic and arkypallidal cells, which differ in their cellular properties. Their functional synaptic connectivity is largely unknown. Here we studied the membrane properties, synaptic inputs, and sensory responses of these subpopulations in the mouse GPe. We performed in vivo whole-cell recordings in GPe neurons and used optogenetic stimulation to dissect their afferent inputs from the striatum and subthalamic nucleus (STN). Both GPe subpopulations received barrages of excitatory and inhibitory inputs during slow wave activity and responded to sensory stimulation with distinct multiphasic patterns. Prototypic cells synaptically inhibited arkypallidal and prototypic cells. Both GPe subpopulations received synaptic input from STN and striatal medium spiny neurons (MSNs). Although STN and indirect pathway MSNs strongly targeted prototypic cells, direct pathway MSNs selectively inhibited arkypallidal cells. We show that GPe subtypes have distinct connectivity patterns that underlie their respective functional roles.


Asunto(s)
Globo Pálido/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Ratones , Vías Nerviosas/fisiología , Optogenética , Técnicas de Placa-Clamp
4.
J Neurophysiol ; 122(6): 2294-2303, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31618095

RESUMEN

Striatal projection neurons, the medium spiny neurons (MSNs), play a crucial role in various motor and cognitive functions. MSNs express either D1- or D2-type dopamine receptors and initiate the direct-pathway (dMSNs) or indirect pathways (iMSNs) of the basal ganglia, respectively. dMSNs have been shown to receive more inhibition than iMSNs from intrastriatal sources. Based on these findings, computational modeling of the striatal network has predicted that under healthy conditions dMSNs should receive more total input than iMSNs. To test this prediction, we analyzed in vivo whole cell recordings from dMSNs and iMSNs in healthy and dopamine-depleted (6OHDA) anaesthetized mice. By comparing their membrane potential fluctuations, we found that dMSNs exhibited considerably larger membrane potential fluctuations over a wide frequency range. Furthermore, by comparing the spike-triggered average membrane potentials, we found that dMSNs depolarized toward the spike threshold significantly faster than iMSNs did. Together, these findings (in particular the STA analysis) corroborate the theoretical prediction that direct-pathway MSNs receive stronger total input than indirect-pathway neurons. Finally, we found that dopamine-depleted mice exhibited no difference between the membrane potential fluctuations of dMSNs and iMSNs. These data provide new insights into the question of how the lack of dopamine may lead to behavioral deficits associated with Parkinson's disease.NEW & NOTEWORTHY The direct and indirect pathways of the basal ganglia originate from the D1- and D2-type dopamine receptor expressing medium spiny neurons (dMSNs and iMSNs). Theoretical results have predicted that dMSNs should receive stronger synaptic input than iMSNs. Using in vivo intracellular membrane potential data, we provide evidence that dMSNs indeed receive stronger input than iMSNs, as has been predicted by the computational model.


Asunto(s)
Dopamina/deficiencia , Neuronas GABAérgicas/fisiología , Potenciales de la Membrana/fisiología , Neostriado/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Modelos Biológicos , Técnicas de Placa-Clamp , Receptores de Dopamina D1 , Receptores de Dopamina D2
5.
Neuroscience ; 381: 115-123, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29679647

RESUMEN

Focal administration of pharmacological agents during in vivo recordings is a useful technique to study the functional properties of neural microcircuits. However, the lack of visual control makes this task difficult and inaccurate, especially when targeting small and deep regions where spillover to neighboring regions is likely to occur. An additional problem with recording stability arises when combining focal drug administration with in vivo intracellular recordings, which are highly sensitive to mechanical vibrations. To address these technical issues, we designed a micro-holder that enables accurate local application of pharmacological agents during in vivo whole-cell recordings. The holder couples the recording and drug delivery pipettes with adjustable distance between the respective tips adapted to the experimental needs. To test the efficacy of the micro-holder we first performed whole-cell recordings in mouse primary somatosensory cortex (S1) with simultaneous extracellular recordings in S1 and motor cortex (M1), before and after local application of bicuculline methiodide (BMI 200 µM). The blockade of synaptic inhibition resulted in increased amplitudes and rising slopes of "Up states", and shortening of their duration. We then checked the usability of the micro-holder in a deeper brain structure, the striatum. We applied tetrodotoxin (TTX 10 µM) during whole-cell recordings in the striatum, while simultaneously obtaining extracellular recordings in S1 and M1. The focal application of TTX in the striatum blocked Up states in the recorded striatal neurons, without affecting the cortical activity. We also describe two different approaches for precisely releasing the drugs without unwanted leakage along the pipette approach trajectory.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Neurotransmisores/administración & dosificación , Técnicas de Placa-Clamp/instrumentación , Animales , Encéfalo/efectos de los fármacos , Ratones
6.
Artículo en Inglés | MEDLINE | ID: mdl-29467627

RESUMEN

The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.


Asunto(s)
Ganglios Basales/metabolismo , Simulación por Computador , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Modelos Neurológicos , Canales de Potasio Shal/metabolismo , Animales , Ganglios Basales/citología , Cuerpo Estriado/citología , Potenciales de la Membrana/fisiología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo
7.
Neuron ; 94(4): 855-865.e5, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28521136

RESUMEN

Parkinson's disease (PD) is a movement disorder caused by the loss of dopaminergic innervation, particularly to the striatum. PD patients often exhibit sensory impairments, yet the underlying network mechanisms are unknown. Here we examined how dopamine (DA) depletion affects sensory processing in the mouse striatum. We used the optopatcher for online identification of direct and indirect pathway projection neurons (MSNs) during in vivo whole-cell recordings. In control mice, MSNs encoded the laterality of sensory inputs with larger and earlier responses to contralateral than ipsilateral whisker deflection. This laterality coding was lost in DA-depleted mice due to adaptive changes in the intrinsic and synaptic properties, mainly, of direct pathway MSNs. L-DOPA treatment restored laterality coding by increasing the separation between ipsilateral and contralateral responses. Our results show that DA depletion impairs bilateral tactile acuity in a pathway-dependent manner, thus providing unexpected insights into the network mechanisms underlying sensory deficits in PD. VIDEO ABSTRACT.


Asunto(s)
Dopamina/metabolismo , Lateralidad Funcional/fisiología , Neostriado/metabolismo , Neuronas/metabolismo , Corteza Somatosensorial/metabolismo , Tacto/fisiología , Animales , Dopaminérgicos/farmacología , Lateralidad Funcional/efectos de los fármacos , Levodopa/farmacología , Ratones , Neostriado/citología , Neostriado/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Oxidopamina , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Técnicas de Placa-Clamp , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Corteza Somatosensorial/citología , Tacto/efectos de los fármacos , Vibrisas
8.
J Immunol ; 195(4): 1713-22, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26136430

RESUMEN

TGF-ß1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-ß1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-ß signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6 -: treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-ß1 -: induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-ß signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte -: neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-ß1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death.


Asunto(s)
Epilepsia/metabolismo , Interleucina-6/metabolismo , Neuroglía/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/genética , Epilepsia/fisiopatología , Regulación de la Expresión Génica/efectos de los fármacos , Interleucina-6/genética , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Especificidad de Órganos/genética , Fosforilación/efectos de los fármacos , Transporte de Proteínas , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/administración & dosificación , Factor de Crecimiento Transformador beta/farmacología
9.
Neurobiol Dis ; 81: 4-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25562657

RESUMEN

The aim of this study was to investigate the role of the synaptic metabotropic zinc receptor mZnR/GPR39 in physiological adaptation to epileptic seizures. We previously demonstrated that synaptic activation of mZnR/GPR39 enhances inhibitory drive in the hippocampus by upregulating neuronal K(+)/Cl(-) co-transporter 2 (KCC2) activity. Here, we first show that mZnR/GPR39 knockout (KO) adult mice have dramatically enhanced susceptibility to seizures triggered by a single intraperitoneal injection of kainic acid, when compared to wild type (WT) littermates. Kainate also substantially enhances seizure-associated gamma oscillatory activity in juvenile mZnR/GPR39 KO hippocampal slices, a phenomenon that can be reproduced in WT tissue by extracellular Zn(2+) chelation. Importantly, kainate-induced synaptic Zn(2+) release enhances surface expression and transport activity of KCC2 in WT, but not mZnR/GPR39 KO hippocampal neurons. Kainate-dependent upregulation of KCC2 requires mZnR/GPR39 activation of the Gαq/phospholipase C/extracellular regulated kinase (ERK1/2) signaling cascade. We suggest that mZnR/GPR39-dependent upregulation of KCC2 activity provides homeostatic adaptation to an excitotoxic stimulus by increasing inhibition. As such, mZnR/GPR39 may provide a novel pharmacological target for dampening epileptic seizure activity.


Asunto(s)
Regulación de la Expresión Génica/genética , Homeostasis/genética , Receptores Acoplados a Proteínas G/metabolismo , Convulsiones/inducido químicamente , Simportadores/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Ácido Edético/farmacología , Agonistas de Aminoácidos Excitadores/toxicidad , Fluoresceínas/metabolismo , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Homeostasis/efectos de los fármacos , Técnicas In Vitro , Ácido Kaínico/toxicidad , Ratones , Ratones Transgénicos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Convulsiones/patología , Estadísticas no Paramétricas , Zinc/metabolismo , Cotransportadores de K Cl
10.
Cereb Cortex ; 24(4): 996-1008, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23236212

RESUMEN

Studying epileptogenesis in a genetic model can facilitate the identification of factors that promote the conversion of a normal brain into one chronically prone to seizures. Synapsin triple-knockout (TKO) mice exhibit adult-onset epilepsy, thus allowing the characterization of events as preceding or following seizure onset. Although it has been proposed that a congenital reduction in inhibitory transmission is the underlying cause for epilepsy in these mice, young TKO mice are asymptomatic. We report that the genetic lesion exerts long-term progressive effects that extend well into adulthood. Although inhibitory transmission is initially reduced, it is subsequently strengthened relative to its magnitude in control mice, so that the excitation to inhibition balance in adult TKOs is inverted in favor of inhibition. In parallel, we observed long-term alterations in synaptic depression kinetics of excitatory transmission and in the extent of tonic inhibition, illustrating adaptations in synaptic properties. Moreover, age-dependent acceleration of the action potential did not occur in TKO cortical pyramidal neurons, suggesting wide-ranging secondary changes in brain excitability. In conclusion, although congenital impairments in inhibitory transmission may initiate epileptogenesis in the synapsin TKO mice, we suggest that secondary adaptations are crucial for the establishment of this epileptic network.


Asunto(s)
Encefalopatías/genética , Encefalopatías/patología , Corteza Entorrinal/patología , Plasticidad Neuronal/genética , Sinapsinas/deficiencia , Factores de Edad , Análisis de Varianza , Animales , Estimulación Eléctrica , Corteza Entorrinal/efectos de los fármacos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , GABAérgicos/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
11.
EMBO Mol Med ; 4(8): 730-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22628224

RESUMEN

Genetic studies link inherited errors in RNA metabolism to familial neurodegenerative disease. Here, we report such errors and the underlying mechanism in sporadic Alzheimer's disease (AD). AD entorhinal cortices presented globally impaired exon exclusions and selective loss of the hnRNP A/B splicing factors. Supporting functional relevance, hnRNP A/B knockdown induced alternative splicing impairments and dendrite loss in primary neurons, and memory and electrocorticographic impairments in mice. Transgenic mice with disease-associated mutations in APP or Tau displayed no alterations in hnRNP A/B suggesting that its loss in AD is independent of Aß and Tau toxicity. However, cholinergic excitation increased hnRNP A/B levels while in vivo neurotoxin-mediated destruction of cholinergic neurons caused cortical AD-like decrease in hnRNP A/B and recapitulated the alternative splicing pattern of AD patients. Our findings present cholinergic-mediated hnRNP A/B loss and impaired RNA metabolism as important mechanisms involved in AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Neuronas Colinérgicas/patología , Trastornos del Conocimiento/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/deficiencia , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Empalme del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...