Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 110(1-1): 014125, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39160916

RESUMEN

Understanding the entropy production of systems strongly coupled to thermal baths is a core problem of both quantum thermodynamics and mesoscopic physics. While many techniques exist to accurately study entropy production in such systems, they typically require a microscopic description of the baths, which can become numerically intractable to study for large systems. Alternatively an open-systems approach can be employed with all the nuances associated with various levels of approximation. Recently, the mesoscopic leads approach has emerged as a powerful method for studying such quantum systems strongly coupled to multiple thermal baths. In this method, a set of discretized lead modes, each locally damped, provide a Markovian embedding. Here we show that this method proves extremely useful to describe entropy production of a strongly coupled open quantum system. We show numerically, for both noninteracting and interacting setups, that a system coupled to a single bath exhibits a thermal fixed point at the level of the embedding. This allows us to use various results from the thermodynamics of quantum dynamical semigroups to infer the nonequilibrium thermodynamics of the strongly coupled, non-Markovian central systems. In particular, we show that the entropy production in the transient regime recovers the well-established microscopic definitions of entropy production with a correction that can be computed explicitly for both the single- and multiple-lead cases.

2.
Phys Rev E ; 107(4-1): 044102, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198837

RESUMEN

Understanding the thermodynamic role of measurement in quantum mechanical systems is a burgeoning field of study. In this article, we study a double quantum dot (DQD) connected to two macroscopic fermionic thermal reservoirs. We assume that the DQD is continuously monitored by a quantum point contact (QPC), which serves as a charge detector. Starting from a minimalist microscopic model for the QPC and reservoirs, we show that the local master equation of the DQD can alternatively be derived in the framework of repeated interactions and that this framework guarantees a thermodynamically consistent description of the DQD and its environment (including the QPC). We analyze the effect of the measurement strength and identify a regime in which particle transport through the DQD is both assisted and stabilized by dephasing. We also find that in this regime the entropic cost of driving the particle current with fixed relative fluctuations through the DQD is reduced. We thus conclude that under continuous measurement a more constant particle current may be achieved at a fixed entropic cost.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA