Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 12: 1295643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756895

RESUMEN

Leukemia is the most common cancer in children. Its incidence has been increasing worldwide since 1910th, suggesting the presence of common sources of the disease, most likely related to people's lifestyle and environment. Understanding the relationship between childhood leukemia and environmental conditions is critical to preventing the disease. This discussion article examines established potentially-carcinogenic environmental factors, such as vehicle emissions and fires, alongside space weather-related parameters like cosmic rays and the geomagnetic field. To discern the primary contributor, we analyze trends and annual variations in leukemia incidence among 0-14-year-olds in the United States, Canada, Australia, and Russia from 1990 to 2018. Comparisons are drawn with the number of vehicles (representing gasoline emissions) and fire-affected land areas (indicative of fire-related pollutants), with novel data for Russia introduced for the first time. While childhood leukemia incidence is rising in all countries under study, the rate of increase in Russia is twice that of other nations, possibly due to a delayed surge in the country's vehicle fleet compared to others. This trend in Russia may offer insights into past leukemia levels in the USA, Canada, and Australia. Our findings highlight vehicular emissions as the most substantial environmental hazard for children among the factors examined. We also advocate for the consideration of potential modulation of carcinogenic effects arising from variations in cosmic ray intensity, as well as the protective role of the geomagnetic field. To support the idea, we provide examples of potential space weather effects at both local and global scales. The additional analysis includes statistical data from 49 countries and underscores the significance of the magnetic field dip in the South Atlantic Anomaly in contributing to a peak in childhood leukemia incidence in Peru, Ecuador and Chile. We emphasize the importance of collectively assessing all potentially carcinogenic factors for the successful future predictions of childhood leukemia risk in each country.


Asunto(s)
Leucemia , Tiempo (Meteorología) , Humanos , Incidencia , Leucemia/epidemiología , Leucemia/etiología , Federación de Rusia/epidemiología , Niño , Preescolar , Estados Unidos/epidemiología , Australia/epidemiología , Canadá/epidemiología , Lactante , Adolescente , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Recién Nacido , Emisiones de Vehículos , Masculino , Femenino , Población Urbana/estadística & datos numéricos , Radiación Cósmica/efectos adversos
2.
Entropy (Basel) ; 21(7)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33267362

RESUMEN

In this study we use theoretical concepts and computational-diagnostic tools of Tsallis non-extensive statistical theory (Tsallis q-triplet: q s e n ,   q r e l ,   q s t a t ), complemented by other known tools of nonlinear dynamics such as Correlation Dimension and surrogate data, Hurst exponent, Flatness coefficient, and p-modeling of multifractality, in order to describe and understand Small-scale Magnetic Islands (SMIs) structures observed in Solar Wind (SW) with a typical size of ~0.01-0.001 AU at 1 AU. Specifically, we analyze ~0.5 MeV energetic ion time-intensity and magnetic field profiles observed by the STEREO A spacecraft during a rare, widely discussed event. Our analysis clearly reveals the non-extensive character of SW space plasmas during the periods of SMIs events, as well as significant physical complex phenomena in accordance with nonlinear dynamics and complexity theory. As our analysis also shows, a non-equilibrium phase transition parallel with self-organization processes, including the reduction of dimensionality and development of long-range correlations in connection with anomalous diffusion and fractional acceleration processes can be observed during SMIs events.

3.
Ann Bot ; 111(5): 859-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23532042

RESUMEN

BACKGROUND: Correlative evidence suggests a relationship between the lunisolar tidal acceleration and the elongation rate of arabidopsis roots grown under free-running conditions of constant low light. METHODS: Seedlings of Arabidopsis thaliana were grown in a controlled-climate chamber maintained at a constant temperature and subjected to continuous low-level illumination from fluorescent tubes, conditions that approximate to a 'free-running' state in which most of the abiotic factors that entrain root growth rates are excluded. Elongation of evenly spaced, vertical primary roots was recorded continuously over periods of up to 14 d using high temporal- and spatial-resolution video imaging and were analysed in conjunction with geophysical variables. KEY RESULTS AND CONCLUSIONS: The results confirm the lunisolar tidal/root elongation relationship. Also presented are relationships between the hourly elongation rates and the contemporaneous variations in geomagnetic activity, as evaluated from the disturbance storm time and ap indices. On the basis of time series of root elongation rates that extend over ≥4 d and recorded at different seasons of the year, a provisional conclusion is that root elongation responds to variation in the lunisolar force and also appears to adjust in accordance with variations in the geomagnetic field. Thus, both lunisolar tidal acceleration and the geomagnetic field should be considered as modulators of root growth rate, alongside other, stronger and more well-known abiotic environmental regulators, and perhaps unexplored factors such as air ions. Major changes in atmospheric pressure are not considered to be a factor contributing to oscillations of root elongation rate.


Asunto(s)
Arabidopsis/fisiología , Campos Magnéticos , Luna , Raíces de Plantas/crecimiento & desarrollo , Sistema Solar , Olas de Marea , Arabidopsis/crecimiento & desarrollo , Presión Atmosférica , Gravitropismo , Periodicidad , Raíces de Plantas/fisiología , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA