Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 19(3): 1176-1188, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27943556

RESUMEN

It is well established that resource quantity and elemental stoichiometry play major roles in shaping below and aboveground plant biodiversity, but their importance for shaping microbial diversity in soil remains unclear. Here, we used statistical modeling on a regional database covering 179 locations and six ecosystem types across Scotland to evaluate the roles of total carbon (C), nitrogen (N) and phosphorus (P) availabilities and ratios, together with land use, climate and biotic and abiotic factors, in determining regional scale patterns of soil bacterial diversity. We found that bacterial diversity and composition were primarily driven by variation in soil resource stoichiometry (total C:N:P ratios), itself linked to different land uses, and secondarily driven by other important biodiversity drivers such as climate, soil spatial heterogeneity, soil pH, root influence (plant-soil microbe interactions) and microbial biomass (soil microbe-microbe interactions). In aggregate, these findings provide evidence that nutrient stoichiometry is a strong predictor of bacterial diversity and composition at a regional scale.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Biodiversidad , Biomasa , Carbono/análisis , Carbono/metabolismo , Clima , Ecosistema , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Raíces de Plantas/microbiología , Plantas/microbiología , Escocia
2.
JAMA Psychiatry ; 71(3): 255-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24402055

RESUMEN

IMPORTANCE: Epigenetic studies present unique opportunities to advance schizophrenia research because they can potentially account for many of its clinical features and suggest novel strategies to improve disease management. OBJECTIVE: To identify schizophrenia DNA methylation biomarkers in blood. DESIGN, SETTING, AND PARTICIPANTS: The sample consisted of 759 schizophrenia cases and 738 controls (N = 1497) collected in Sweden. We used methyl-CpG-binding domain protein-enriched genome sequencing of the methylated genomic fraction, followed by next-generation DNA sequencing. We obtained a mean (SD) number of 68 (26.8) million reads per sample. This massive data set was processed using a specifically designed data analysis pipeline. Critical top findings from our methylome-wide association study (MWAS) were replicated in independent case-control participants using targeted pyrosequencing of bisulfite-converted DNA. MAIN OUTCOMES AND MEASURES: Status of schizophrenia cases and controls. RESULTS: Our MWAS suggested a considerable number of effects, with 25 sites passing the highly conservative Bonferroni correction and 139 sites significant at a false discovery rate of 0.01. Our top MWAS finding, which was located in FAM63B, replicated with P = 2.3 × 10-10. It was part of the networks regulated by microRNA that can be linked to neuronal differentiation and dopaminergic gene expression. Many other top MWAS results could be linked to hypoxia and, to a lesser extent, infection, suggesting that a record of pathogenic events may be preserved in the methylome. Our findings also implicated a site in RELN, one of the most frequently studied candidates in methylation studies of schizophrenia. CONCLUSIONS AND RELEVANCE: To our knowledge, the present study is one of the first MWASs of disease with a large sample size using a technology that provides good coverage of methylation sites across the genome. Our results demonstrated one of the unique features of methylation studies that can capture signatures of environmental insults in peripheral tissues. Our MWAS suggested testable hypotheses about disease mechanisms and yielded biomarkers that can potentially be used to improve disease management.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo/métodos , Sistema de Registros , Esquizofrenia/etiología , Biomarcadores/sangre , Epigenómica/métodos , Estudio de Asociación del Genoma Completo/instrumentación , Humanos , Proteína Reelina , Esquizofrenia/genética , Análisis de Secuencia de ADN , Suecia
3.
JAMA Psychiatry ; 70(6): 573-81, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23894747

RESUMEN

IMPORTANCE: Schizophrenia (SCZ) is a devastating psychiatric condition. Identifying the specific genetic variants and pathways that increase susceptibility to SCZ is critical to improve disease understanding and address the urgent need for new drug targets. OBJECTIVE: To identify SCZ susceptibility genes. DESIGN: We integrated results from a meta-analysis of 18 genome-wide association studies (GWAS) involving 1,085,772 single-nucleotide polymorphisms (SNPs) and 6 databases that showed significant informativeness for SCZ. The 9380 most promising SNPs were then specifically genotyped in an independent family-based replication study that, after quality control, consisted of 8107 SNPs. SETTING: Linkage meta-analysis, brain transcriptome meta-analysis, candidate gene database, OMIM, relevant mouse studies, and expression quantitative trait locus databases. PATIENTS: We included 11,185 cases and 10,768 control subjects from 6 databases and, after quality control 6298 individuals (including 3286 cases) from 1811 nuclear families. MAIN OUTCOMES AND MEASURES: Case-control status for SCZ. RESULTS: Replication results showed a highly significant enrichment of SNPs with small P values. Of the SNPs with replication values of P.01, the proportion of SNPs that had the same direction of effects as in the GWAS meta-analysis was 89% in the combined ancestry group (sign test, P < 2.20 x 10(-16) and 93% in subjects of European ancestry only (P < 2.20 < 10(-16)). Our results supported the major histocompatibility complex region showing a3.7-fold overall enrichment of replication values of P < .01 in subjects from European ancestry. We replicated SNPs in TCF4 (P = 2.53 x 10(-10)) and NOTCH4 (P = 3.16 x 10(-7)) that are among the most robust SCZ findings. More novel findings included POM121L2 (P = 3.51 x 10(-7)), AS3MT (P = 9.01 x 10(-7)), CNNM2 (P = 6.07 = 10(-7)), and NT5C2(P = 4.09 x 10(-7)). To explore the many small effects, we performed pathway analyses. The most significant pathways involved neuronal function (axonal guidance, neuronal systems, and L1 cell adhesion molecule interaction)and the immune system (antigen processing, cell adhesion molecules relevant to T cells, and translocation to immunological synapse). CONCLUSIONS AND RELEVANCE: We replicated novel SCZ disease genes and pathogenic pathways. Better understanding the molecular and biological mechanisms involved with schizophrenia may improve disease management and may identify new drug targets.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Esquizofrenia/genética , Animales , Familia , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Polimorfismo de Nucleótido Simple/genética
4.
Eur J Hum Genet ; 20(9): 953-5, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22378283

RESUMEN

DNA from Epstein-Barr virus-transformed lymphocyte cell lines (LCLs) has proven useful for studies of genetic sequence polymorphisms. Whether LCL DNA is suitable for methylation studies is less clear. We conduct a genome-wide methylation investigation using an array set with 45 million probes to investigate the methylome of LCL DNA and technical duplicates of WB DNA from the same 10 individuals. We focus specifically on methylation sites that show variation between individuals and, therefore, are potentially useful as biomarkers. The sample correlations for the methylation variable probes ranged from 0.69 to 0.78 for the WB duplicates and from 0.27 to 0.72 for WB vs LCL. To compare the pattern of the methylation signals, we grouped adjacent probes based on their inter-correlations. These analyses showed ∼29 000 and ∼14 000 blocks in WB and LCL, respectively. Merely 31% of the methylated regions detected in WB were detectable in LCLs. Furthermore, we observed significant differences in mean difference between WB and LCL as compared with duplicates of WB (P-value =2.2 × 10(-16)). Our study shows that there are substantial differences in the DNA methylation patterns between LCL and WB. Thus, LCL DNA should not be used as a proxy for WB DNA in methylome-wide studies.


Asunto(s)
Metilación de ADN , ADN/genética , Linfocitos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Línea Celular Transformada , ADN/sangre , ADN/aislamiento & purificación , Sondas de ADN , Femenino , Sitios Genéticos , Herpesvirus Humano 4/genética , Humanos , Linfocitos/virología , Masculino , Persona de Mediana Edad , Especificidad de Órganos
6.
Neuropsychopharmacology ; 36(3): 616-26, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21107309

RESUMEN

Neurocognitive deficits are a core feature of schizophrenia and, therefore, represent potentially critical outcome variables for assessing antipsychotic treatment response. We performed genome-wide association studies (GWAS) with 492K single nucleotide polymorphisms (SNPs) in a sample of 738 patients with schizophrenia from the Clinical Antipsychotic Trials of Intervention Effectiveness study. Outcome variables consisted of a neurocognitive battery administered at multiple time points over an 18-month period, measuring processing speed, verbal memory, vigilance, reasoning, and working memory domains. Genetic mediation of improvements in each of these five domains plus a composite neurocognitive measure was assessed for each of five antipsychotics (olanzapine, perphenazine, quetiapine, risperidone, and ziprasidone). Six SNPs achieved genome-wide significance using a pre-specified threshold that ensures, on average, only 1 in 10 findings is a false discovery. These six SNPs were located within, or in close proximity to, genes EHF, SLC26A9, DRD2, GPR137B, CHST8, and IL1A. The more robust findings, that is those significant across multiple neurocognitive domains and having adjacent SNPs showing evidence for association, were rs286913 at the EHF gene (p-value 6.99 × 10(-8), q-value 0.034, mediating the effects of ziprasidone on vigilance), rs11240594 at SLC26A9 (p-value 1.4 × 10(-7), q-value 0.068, mediating the effects of olanzapine on processing speed), and rs11677416 at IL1A (p-value 6.67 × 10(-7), q-value 0.081, mediating the effects of olanzapine on working memory). This study has generated several novel candidate genes for antipsychotic response. However, our findings will require replication and functional validation. To facilitate replication efforts, we provide all GWAS p-values for download.


Asunto(s)
Antipsicóticos/uso terapéutico , Trastornos del Conocimiento , Estudio de Asociación del Genoma Completo , Farmacogenética , Esquizofrenia , Adulto , Antiportadores/genética , Antipsicóticos/farmacología , Atención/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Femenino , Estudios de Seguimiento , Humanos , Interleucina-1alfa/genética , Masculino , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Pruebas Neuropsicológicas , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/complicaciones , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Transportadores de Sulfato , Factores de Tiempo , Factores de Transcripción/genética
7.
PLoS One ; 5(4): e10316, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20428234

RESUMEN

BACKGROUND: The role of long non-coding RNAs (lncRNAs) in controlling gene expression has garnered increased interest in recent years. Sequencing projects, such as Fantom3 for mouse and H-InvDB for human, have generated abundant data on transcribed components of mammalian cells, the majority of which appear not to be protein-coding. However, much of the non-protein-coding transcriptome could merely be a consequence of 'transcription noise'. It is therefore essential to use bioinformatic approaches to identify the likely functional candidates in a high throughput manner. PRINCIPAL FINDINGS: We derived a scheme for classifying and annotating likely functional lncRNAs in mammals. Using the available experimental full-length cDNA data sets for human and mouse, we identified 78 lncRNAs that are either syntenically conserved between human and mouse, or that originate from the same protein-coding genes. Of these, 11 have significant sequence homology. We found that these lncRNAs exhibit: (i) patterns of codon substitution typical of non-coding transcripts; (ii) preservation of sequences in distant mammals such as dog and cow, (iii) significant sequence conservation relative to their corresponding flanking regions (in 50% cases, flanking regions do not have homology at all; and in the remaining, the degree of conservation is significantly less); (iv) existence mostly as single-exon forms (8/11); and, (v) presence of conserved and stable secondary structure motifs within them. We further identified orthologous protein-coding genes that are contributing to the pool of lncRNAs; of which, genes implicated in carcinogenesis are significantly over-represented. CONCLUSION: Our comparative mammalian genomics approach coupled with evolutionary analysis identified a small population of conserved long non-protein-coding RNAs (lncRNAs) that are potentially functional across Mammalia. Additionally, our analysis indicates that amongst the orthologous protein-coding genes that produce lncRNAs, those implicated in cancer pathogenesis are significantly over-represented, suggesting that these lncRNAs could play an important role in cancer pathomechanisms.


Asunto(s)
Biología Computacional/métodos , ARN no Traducido/fisiología , Animales , Secuencia Conservada , Recolección de Datos , Genómica , Humanos , Mamíferos , ARN no Traducido/clasificación , ARN no Traducido/genética , Homología de Secuencia de Ácido Nucleico
8.
Biol Direct ; 4: 38, 2009 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-19807910

RESUMEN

UNLABELLED: Pseudogenes arise from the decay of gene copies following either RNA-mediated duplication (processed pseudogenes) or DNA-mediated duplication (nonprocessed pseudogenes). Here, we show that long protein-coding genes tend to produce more nonprocessed pseudogenes than short genes, whereas the opposite is true for processed pseudogenes. Protein-coding genes longer than 3000 bp are 6 times more likely to produce nonprocessed pseudogenes than processed ones. REVIEWERS: This article was reviewed by Dr. Dan Graur and Dr. Craig Nelson (nominated by Dr. J Peter Gogarten).


Asunto(s)
Seudogenes/genética , Animales , Secuencia de Bases , Regulación de la Expresión Génica , Humanos , Ratones , Sistemas de Lectura Abierta/genética
9.
BMC Genomics ; 10: 435, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19754956

RESUMEN

BACKGROUND: Transcribed pseudogenes are copies of protein-coding genes that have accumulated indicators of coding-sequence decay (such as frameshifts and premature stop codons), but nonetheless remain transcribed. Recent experimental evidence indicates that transcribed pseudogenes may regulate the expression of homologous genes, through antisense interference, or generation of small interfering RNAs (siRNAs). Here, we assessed the genomic evidence for such transcribed pseudogenes of potential functional importance, in the human genome. The most obvious indicators of such functional importance are significant evidence of conservation and selection pressure. RESULTS: A variety of pseudogene annotations from multiple sources were pooled and filtered to obtain a subset of sequences that have significant mid-sequence disablements (frameshifts and premature stop codons), and that have clear evidence of full-length mRNA transcription. We found 1750 such transcribed pseudogene annotations (TPAs) in the human genome (corresponding to approximately 11.5% of human pseudogene annotations). We checked for syntenic conservation of TPAs in other mammals (rhesus monkey, mouse, rat, dog and cow). About half of the human TPAs are conserved in rhesus monkey, but strikingly, very few in mouse (approximately 3%). The TPAs conserved in rhesus monkey show evidence of selection pressure (relative to surrounding intergenic DNA) on: (i) their GC content, and (ii) their rate of nucleotide substitution. This is in spite of distributions of Ka/Ks (ratios of non-synonymous to synonymous substitution rates), congruent with a lack of protein-coding ability. Furthermore, we have identified 68 human TPAs that are syntenically conserved in at least two other mammals. Interestingly, we observe three TPA sequences conserved in dog that have intermediate character (i.e., evidence of both protein-coding ability and pseudogenicity), and discuss the implications of this. CONCLUSION: Through evolutionary analysis, we have identified candidate sequences for functional human transcribed pseudogenes, and have pinpointed 68 strong candidates for further investigation as potentially functional transcribed pseudogenes across multiple mammal species.


Asunto(s)
Genoma Humano , Seudogenes , Selección Genética , Secuencia de Aminoácidos , Animales , Bovinos , Perros , Evolución Molecular , Genómica , Humanos , Macaca mulatta , Ratones , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/genética , Ratas , Alineación de Secuencia , Análisis de Secuencia de ADN , Sintenía , Transcripción Genética
10.
BMC Genomics ; 9: 449, 2008 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-18826580

RESUMEN

BACKGROUND: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. RESULTS: In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. CONCLUSION: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.


Asunto(s)
Bordetella/genética , Bordetella/metabolismo , Bordetella/patogenicidad , Genoma Bacteriano , Proteínas Bacterianas/genética , Composición de Base , Evolución Biológica , Bordetella bronchiseptica/genética , Bordetella parapertussis/genética , Bordetella pertussis/genética , Cromosomas Bacterianos , Genes Bacterianos , Biblioteca Genómica , Secuencias Repetitivas Esparcidas , Datos de Secuencia Molecular , Sintenía , Virulencia/genética , Factores de Virulencia de Bordetella/genética
11.
Mol Biol Evol ; 24(2): 449-56, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17108184

RESUMEN

Reductive evolution in mitochondria and obligate intracellular microbes has led to a significant reduction in their genome size and guanine plus cytosine content (GC). We show that genome shrinkage during reductive evolution in prokaryotes follows an exponential decay pattern and provide a method to predict the extent of this decay on an evolutionary timescale. We validated predictions by comparison with estimated extents of genome reduction known to have occurred in mitochondria and Buchnera aphidicola, through comparative genomics and by drawing on available fossil evidences. The model shows how the mitochondrial ancestor would have quickly shed most of its genome, shortly after its incorporation into the protoeukaryotic cell and prior to codivergence subsequent to the split of eukaryotic lineages. It also predicts that the primary rickettsial parasitic event would have occurred between 180 and 425 million years ago (MYA), an event of relatively recent evolutionary origin considering the fact that Rickettsia and mitochondria evolved from a common alphaproteobacterial ancestor. This suggests that the symbiotic events of Rickettsia and mitochondria originated at different time points. Moreover, our model results predict that the ancestor of Wigglesworthia glossinidia brevipalpis, dated around the time of origin of its symbiotic association with the tsetse fly (50-100 MYA), was likely to have been an endosymbiont itself, thus supporting an earlier proposition that Wigglesworthia, which is currently a maternally inherited primary endosymbiont, evolved from a secondary endosymbiont.


Asunto(s)
Buchnera/genética , Evolución Molecular , Genoma Bacteriano , Mitocondrias/genética , Composición de Base , Evolución Biológica , ADN Mitocondrial , ADN Ribosómico/genética , Herencia Extracromosómica , Genoma , Modelos Genéticos , Filogenia , ARN Ribosómico 16S/genética , Simbiosis
12.
Nat Biotechnol ; 24(8): 997-1004, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16878126

RESUMEN

Alcanivorax borkumensis is a cosmopolitan marine bacterium that uses oil hydrocarbons as its exclusive source of carbon and energy. Although barely detectable in unpolluted environments, A. borkumensis becomes the dominant microbe in oil-polluted waters. A. borkumensis SK2 has a streamlined genome with a paucity of mobile genetic elements and energy generation-related genes, but with a plethora of genes accounting for its wide hydrocarbon substrate range and efficient oil-degradation capabilities. The genome further specifies systems for scavenging of nutrients, particularly organic and inorganic nitrogen and oligo-elements, biofilm formation at the oil-water interface, biosurfactant production and niche-specific stress responses. The unique combination of these features provides A. borkumensis SK2 with a competitive edge in oil-polluted environments. This genome sequence provides the basis for the future design of strategies to mitigate the ecological damage caused by oil spills.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Bacteriano/genética , Halomonadaceae/genética , Halomonadaceae/metabolismo , Hidrocarburos/metabolismo , Secuencia de Bases , Biodegradación Ambiental , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico
13.
Environ Microbiol ; 7(12): 1996-2010, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16309396

RESUMEN

A metagenome expression library of bulk DNA extracted from the rumen content of a dairy cow was established in a phage lambda vector and activity-based screening employed to explore the functional diversity of the microbial flora. Twenty-two clones specifying distinct hydrolytic activities (12 esterases, nine endo-beta-1,4-glucanases and one cyclodextrinase) were identified in the library and characterized. Sequence analysis of the retrieved enzymes revealed that eight (36%) were entirely new and formed deep-branched phylogenetic lineages with no close relatives among known ester- and glycosyl-hydrolases. Bioinformatic analyses of the hydrolase gene sequences, and the sequences and contexts of neighbouring genes, suggested tentative phylogenetic assignments of the rumen organisms producing the retrieved enzymes. The phylogenetic novelty of the hydrolases suggests that some of them may have potential for new applications in biocatalysis.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Fúngicas/genética , Hidrolasas/genética , Rumen/microbiología , Animales , Biodiversidad , Bovinos , Femenino , Genes Bacterianos , Genes Fúngicos , Genes de Helminto , Proteínas del Helminto/genética , Datos de Secuencia Molecular , Nueva Zelanda , Rumen/parasitología
14.
Chem Biol ; 12(8): 895-904, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16125101

RESUMEN

We created a metagenome expression library from the brine:seawater interface of the Urania hypersaline basin, screened it for esterases, and characterized five of these. Two had no significant sequence homology to known esterases, hydrolyzed both carboxylesters and thioesters, and exhibited unusual, habitat-specific characteristics (preference for high hydrostatic pressure and salinity). One has an unusual structural signature incorporating three catalytic active centers mediating distinct hydrolytic activities and an adaptive tertiary-quaternary structure that alters between three molecular states, according to the prevailing physicochemical conditions. Some of the esterases have high activities, specificities, enantioselectivities, and exceptional stability in polar solvents, and they are therefore potentially useful for industrial biotransformations. One possesses the highest enantioselectivity toward an ester of the important chiral synthon solketal (E: 126[S]; 98%ee).


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Esterasas/aislamiento & purificación , Esterasas/metabolismo , Biología Marina/métodos , Bacterias Anaerobias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Ecosistema , Esterasas/química , Presión Hidrostática , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , Cloruro de Sodio , Estereoisomerismo , Especificidad por Sustrato
15.
Nucleic Acids Res ; 33(13): 4016-22, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16030352

RESUMEN

We report here the finding of a highly significant inverse correlation of the uracil content of 16S rRNA and the optimum growth temperature (T(opt)) of cultured thermophilic and psychrophilic prokaryotes. This correlation was significantly different from the weaker correlations between the contents of other nucleotides and T(opt). Analysis of the 16S rRNA secondary structure regions revealed a fall in the A:U base-pair content in step with the increase in T(opt) that was much steeper than that of mismatched base-pairs, which are thermodynamically less stable. These findings indicate that the 16S rRNA sequences of thermophiles and psychrophiles are under a strong thermo-adaptive pressure, and that structure-function constraints play a crucial role in determining their 16S rRNA nucleotide composition. The derived relationship between uracil content and T(opt) was used to develop an algorithm to predict the T(opt) values of uncultured prokaryotes lacking cultured close relatives and belonging to the phyla predominantly containing thermophiles. This algorithm may be useful in guiding the design of cultivation conditions for hitherto uncultured microbes.


Asunto(s)
ARN Bacteriano/química , ARN Ribosómico 16S/química , Temperatura , Uracilo/análisis , Adaptación Fisiológica , Algoritmos , Emparejamiento Base , Proliferación Celular , Frío , Calor , Células Procariotas/citología , ARN de Archaea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...