Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 10(2): 240-255, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38278954

RESUMEN

We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.


Asunto(s)
Alismatales , Zosteraceae , Alismatales/genética , Zosteraceae/genética , Ecosistema
2.
Genome Biol Evol ; 15(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37708410

RESUMEN

Mitochondrial genomes (mitogenomes) of flowering plants are composed of multiple chromosomes. Recombination within and between the mitochondrial chromosomes may generate diverse DNA molecules termed isoforms. The isoform copy number and composition can be dynamic within and among individual plants due to uneven replication and homologous recombination. Nonetheless, despite their functional importance, the level of mitogenome conservation within species remains understudied. Whether the ontogenetic variation translates to evolution of mitogenome composition over generations is currently unknown. Here we show that the mitogenome composition of the seagrass Zostera marina is conserved among worldwide populations that diverged ca. 350,000 years ago. Using long-read sequencing, we characterized the Z. marina mitochondrial genome and inferred the repertoire of recombination-induced configurations. To characterize the mitochondrial genome architecture worldwide and study its evolution, we examined the mitogenome in Z. marina meristematic region sampled in 16 populations from the Pacific and Atlantic oceans. Our results reveal a striking similarity in the isoform relative copy number, indicating a high conservation of the mitogenome composition among distantly related populations and within the plant germline, despite a notable variability during individual ontogenesis. Our study supplies a link between observations of dynamic mitogenomes at the level of plant individuals and long-term mitochondrial evolution.


Asunto(s)
Genoma Mitocondrial , Magnoliopsida , Humanos , Metagenómica , ADN Mitocondrial/genética , Mitocondrias/genética , Magnoliopsida/genética
4.
Nat Plants ; 9(8): 1207-1220, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37474781

RESUMEN

Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243 ky (thousand years). Mediterranean populations were founded ~44 kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19 kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.


Asunto(s)
Ecosistema , Zosteraceae , Zosteraceae/genética , Canadá , Filogeografía , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...