Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
PLoS Pathog ; 20(4): e1012137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603763

RESUMEN

Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase ß subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , Interferón Tipo I , Mycobacterium tuberculosis , Rifampin , Transducción de Señal , Interferón Tipo I/metabolismo , Animales , Ratones , Rifampin/farmacología , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Ratones Endogámicos C57BL , Farmacorresistencia Bacteriana/genética , Tuberculosis/microbiología , Tuberculosis/inmunología , Tuberculosis/genética , Ratones Noqueados
2.
Infect Immun ; 92(4): e0049523, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38451080

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infects up to a quarter of the world's population. Although immune responses can control Mtb infection, 5%-10% of infected individuals can progress to active TB disease (progressors). A myriad of host factors regulate disease progression in TB and a better understanding of immune correlates of protection and disease is pivotal for the development of new therapeutics. Comparison of human whole blood transcriptomic metadata with that of macaque TB progressors and Mtb-infected diversity outbred mice (DO) led to the identification of differentially regulated gene (DEG) signatures, associated with TB progression or control. The current study assessed the function of Phospholipase C epsilon (PLCƐ1), the top downregulated gene across species in TB progressors, using a gene-specific knockout mouse model of Mtb infection and in vitro Mtb-infected bone marrow-derived macrophages. PLCƐ1 gene expression was downregulated in TB progressors across species. PLCε1 deficiency in the mouse model resulted in increased susceptibility to Mtb infection, coincident accumulation of lung myeloid cells, and reduced ability to mount antibacterial responses. However, PLCε1 was not required for the activation and accumulation of T cells in mice. Our results suggest an important early role for PLCƐ1 in shaping innate immune response to TB and may represent a putative target for host-directed therapy.


Asunto(s)
Mycobacterium tuberculosis , Fosfoinositido Fosfolipasa C , Tuberculosis , Humanos , Ratones , Animales , Activación de Macrófagos , Inmunidad Innata
3.
mBio ; 15(4): e0329923, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38407132

RESUMEN

Tuberculosis is the leading cause of death due to an infectious disease worldwide. Innate lymphoid type 3 cells (ILC3s) mediate early protection during Mycobacterium tuberculosis (Mtb) infection. However, the early signaling mechanisms that govern ILC3 activation or recruitment within the lung during Mtb infection are unclear. scRNA-seq analysis of Mtb-infected mouse lung innate lymphoid cells (ILCs) has revealed the presence of different clusters of ILC populations, suggesting heterogeneity. Using mouse models, we show that during Mtb infection, interleukin-1 receptor (IL-1R) signaling on epithelial cells drives ILC3 expansion and regulates ILC3 accumulation in the lung. Furthermore, our data revealed that C-X-C motif chemokine receptor 5 (CXCR5) signaling plays a crucial role in ILC3 recruitment from periphery during Mtb infection. Our study thus establishes the early responses that drive ILC3 accumulation during Mtb infection and points to ILC3s as a potential vaccine target. IMPORTANCE: Tuberculosis is a leading cause of death due to a single infectious agent accounting for 1.6 million deaths each year. In our study, we determined the role of type 3 innate lymphoid cells in early immune events necessary for achieving protection during Mtb infection. Our study reveals distinct clusters of ILC2, ILC3, and ILC3/ILC1-like cells in Mtb infection. Moreover, our study reveal that IL-1R signaling on lung type 2 epithelial cells plays a key role in lung ILC3 accumulation during Mtb infection. CXCR5 on ILC3s is involved in ILC3 homing from periphery during Mtb infection. Thus, our study provides novel insights into the early immune mechanisms governed by innate lymphoid cells that can be targeted for potential vaccine-induced protection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Vacunas , Ratones , Animales , Inmunidad Innata , Linfocitos , Pulmón
4.
J Infect Dis ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324907

RESUMEN

Early innate immune responses play an important role in determining the protective outcome of Mycobacterium tuberculosis (Mtb) infection. Nuclear factor kappa B (NF-κB) signaling in immune cells regulates the expression of key downstream effector molecules that mount early anti-mycobacterial responses. Using conditional knockout mice, we studied the effect of abrogation of NF-κB signaling in different myeloid cell types and its impact on Mtb infection. Our results show that absence of IKK2-mediated signaling in all myeloid cells resulted in increased susceptibility to Mtb infection. In contrast, absence of IKK2-mediated signaling specifically in CD11c+ myeloid cells induced early pro-inflammatory cytokine responses, enhanced the recruitment of myeloid cells and mediated early resistance to Mtb. Abrogation of IKK2 in MRP8-expressing neutrophils did not impact either disease pathology or Mtb control. Thus, we describe an early immunoregulatory role for NF-κB signaling in CD11c-expressing phagocytes, and a later protective role for NF-κB in LysM-expressing cells during Mtb infection.

5.
Hum Vaccin Immunother ; 20(1): 2302070, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38190806

RESUMEN

Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis (Mtb), affects the lungs of infected individuals (pulmonary TB) but can also affect other sites (extrapulmonary TB). The only licensed vaccine Mycobacterium bovis bacillus Calmette-Guerin (BCG) protects infants and young children but exhibits variable efficacy in protecting against adult pulmonary TB. Poor compliance and prolonged treatment regimens associated with the use of chemotherapy has contributed to the development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Thus, there is an urgent need for the design of more effective vaccines against TB. The development of safe and novel adjuvants for human use is critical. In this study, we demonstrate that saponin-based TQL1055 adjuvant when formulated with a TLR4 agonist (PHAD) and Mtb specific immunodominant antigens (ESAT-6 and Ag85B) and delivered intramuscularly in mice, the SA-TB vaccine induced potent lung immune responses. Additionally, the SA-TB vaccine conferred significant protection against Mtb infection, comparable with levels induced by BCG. These findings support the development of a SA-TB vaccine comprising TQL1055, as a novel, safe and effective TB vaccine for potential use in humans.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Saponinas , Vacunas contra la Tuberculosis , Tuberculosis Pulmonar , Adulto , Niño , Lactante , Humanos , Animales , Ratones , Preescolar , Vacuna BCG , Adyuvantes Inmunológicos , Tuberculosis Pulmonar/prevención & control
6.
ACS Infect Dis ; 9(10): 1815-1820, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37787461

RESUMEN

The alarmin calprotectin (S100A8/A9) is thought to drive a cytokine storm, a hallmark of severe COVID-19. Recent studies report circulating S100A8/A9 levels can distinguish COVID-19 severity but have only been conducted in non-U.S. cohorts and mainly focus on serum S100A8/A9 levels. Thus, we quantified S100A8/A9 in serum and urine samples from a hospital cohort in St. Louis, Missouri, to expand the understanding of S100A8/A9 as a prognostic biomarker for COVID-19. Elevated S100A8/A9 serum levels were observed in ICU patients (n = 49, p = 0.0370) and patients with fatal cases of COVID-19 (n = 76, p = 0.0018). We observed no correlation in the S100A8/A9 levels in matched serum and urine samples. Our results support the association of serum S100A8/A9 levels with COVID-19 severity and suggest that further investigation of urine S100A8/A9 as a COVID-19 biomarker is not warranted.


Asunto(s)
COVID-19 , Calgranulina B , Humanos , COVID-19/diagnóstico , Calgranulina A , Complejo de Antígeno L1 de Leucocito , Biomarcadores
7.
Infect Immun ; 91(10): e0020123, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37754680

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) play a vital role in the host response to infection through the rapid and robust production of mature immune cells. These HSPC responses can be influenced, directly and indirectly, by pathogens as well. Infection with Mycobacterium tuberculosis (Mtb) can drive lymphopoiesis through modulation of type I interferon (IFN) signaling. We have previously found that the presence of a drug resistance (DR)-conferring mutation in Mtb drives altered host-pathogen interactions and heightened type I IFN production in vitro. But the impacts of this DR mutation on in vivo host responses to Mtb infection, particularly the hematopoietic compartment, remain unexplored. Using a mouse model, we show that, while drug-sensitive Mtb infection induces expansion of HSPC subsets and a skew toward lymphopoiesis, DR Mtb infection fails to induce an expansion of these subsets and an accumulation of mature granulocytes in the bone marrow. Using single-cell RNA sequencing, we show that the HSCs from DR Mtb-infected mice fail to upregulate pathways related to cytokine signaling across all profiled HSC subsets. Collectively, our studies report a novel finding of a chronic infection that fails to induce a potent hematopoietic response that can be further investigated to understand pathogen-host interaction at the level of hematopoiesis.


Asunto(s)
Infecciones Bacterianas , Mycobacterium tuberculosis , Tuberculosis , Humanos , Médula Ósea , Células Madre Hematopoyéticas , Mycobacterium tuberculosis/fisiología , Hematopoyesis/fisiología , Infecciones Bacterianas/metabolismo , Células de la Médula Ósea
8.
mBio ; 14(5): e0094623, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37682004

RESUMEN

IMPORTANCE: This study highlights the impact of specific rifampicin-resistance-conferring mutations on the host immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Clinical reports have previously suggested that multi-drug-resistant) TB patients exhibit altered peripheral immune responses as compared with their drug-sensitive TB counterparts. The murine model of infection with Mtb strains carrying drug-resistance-conferring mutations recapitulated these findings and allowed us to mechanistically interrogate the pathways responsible for driving the divergent immune responses. Our findings underscore the need for greater investigation into bacterial heterogeneity to better appreciate the diversity in host-pathogen interactions during TB disease.


Asunto(s)
Interferón Tipo I , Mycobacterium tuberculosis , Tuberculosis , Humanos , Animales , Ratones , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Interferón Tipo I/genética , Mutación , Antituberculosos/farmacología , ARN Polimerasas Dirigidas por ADN/genética , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
9.
STAR Protoc ; 4(3): 102544, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659083

RESUMEN

Processing and analyzing single-cell RNA-seq (scRNA-seq) from lung cells are challenging due to the complexity of cell subtypes and biological variations within sample groups. Here, we present a protocol for performing an in-depth assessment on lung lymphocyte populations derived from healthy and Mycobacterium tuberculosis-infected mice. We describe steps for downloading processed scRNA-seq data, integrating samples across different conditions, and performing cluster analysis. We then detail procedures for identifying lymphoid cell subtypes, differential analysis, and pathway enrichment analysis. For complete details on the use and execution of this protocol, please refer to Akter et al. (2022).1.


Asunto(s)
Mycobacterium tuberculosis , Animales , Ratones , Mycobacterium tuberculosis/genética , Análisis de Expresión Génica de una Sola Célula , Análisis por Conglomerados
10.
Trends Immunol ; 44(9): 712-723, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543504

RESUMEN

Tuberculosis (TB) is the leading cause of death due to an infectious agent, with more than 1.5 million deaths attributed to TB annually worldwide. The global dissemination of drug resistance across Mycobacterium tuberculosis (Mtb) strains, causative of TB, resulted in an estimated 450 000 cases of drug-resistant (DR) TB in 2021. Dysregulated immune responses have been observed in patients with multidrug resistant (MDR) TB, but the effects of drug resistance acquisition and impact on host immunity remain obscure. In this review, we compile studies that span aspects of altered host-pathogen interactions and highlight research that explores how drug resistance and immunity might intersect. Understanding the immune processes differentially induced during DR TB would aid the development of rational therapeutics and vaccines for patients with MDR TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Rifampin , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
11.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37200107

RESUMEN

The ADP ribosyltransferases (PARPs 1-17) regulate diverse cellular processes, including DNA damage repair. PARPs are classified on the basis of their ability to catalyze poly-ADP-ribosylation (PARylation) or mono-ADP-ribosylation (MARylation). Although PARP9 mRNA expression is significantly increased in progressive tuberculosis (TB) in humans, its participation in host immunity to TB is unknown. Here, we show that PARP9 mRNA encoding the MARylating PARP9 enzyme was upregulated during TB in humans and mice and provide evidence of a critical modulatory role for PARP9 in DNA damage, cyclic GMP-AMP synthase (cGAS) expression, and type I IFN production during TB. Thus, Parp9-deficient mice were susceptible to Mycobacterium tuberculosis infection and exhibited increased TB disease, cGAS and 2'3'-cyclic GMP-AMP (cGAMP) expression, and type I IFN production, along with upregulation of complement and coagulation pathways. Enhanced M. tuberculosis susceptibility is type I IFN dependent, as blockade of IFN α receptor (IFNAR) signaling reversed the enhanced susceptibility of Parp9-/- mice. Thus, in sharp contrast to PARP9 enhancement of type I IFN production in viral infections, this member of the MAR family plays a protective role by limiting type I IFN responses during TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Ratones , ADP-Ribosilación , Reparación del ADN , Mycobacterium tuberculosis/metabolismo , Nucleotidiltransferasas/genética , Poli(ADP-Ribosa) Polimerasas/genética , Tuberculosis/genética
12.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012543

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Linfocitos T Colaboradores-Inductores , Linfocitos B , Tejido Linfoide , Centro Germinal , Factores de Transcripción
13.
Front Public Health ; 10: 967920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276367

RESUMEN

Introduction: Recent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines' pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19. Materials and methods: We studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty. Results: For child mortality, headline cost-effectiveness was $650 per child death averted. For COVID-19, assuming OPV had 20% effectiveness, incremental cost per death averted was $23,000-65,000 if it were administered simultaneously with a COVID-19 vaccine <200 days into a wave of the epidemic. If the COVID-19 vaccine availability were delayed, the cost per averted death would decrease to $2600-6100. Estimated benefit-to-cost ratios vary but are consistently high. Discussion: Economic evaluation suggests the potential of OPV to efficiently reduce child mortality in high mortality environments. Likewise, within a broad range of assumed effect sizes, OPV (or another vaccine with NSE) could play an economically attractive role against COVID-19 in countries facing COVID-19 vaccine delays. Funding: The contribution by DTJ was supported through grants from Trond Mohn Foundation (BFS2019MT02) and Norad (RAF-18/0009) through the Bergen Center for Ethics and Priority Setting.


Asunto(s)
COVID-19 , Poliomielitis , Niño , Humanos , Vacunas contra la COVID-19 , Mortalidad del Niño , Poliomielitis/prevención & control , COVID-19/prevención & control , Programas de Inmunización , Vacuna Antipolio Oral
14.
J Interferon Cytokine Res ; 42(8): 421-429, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35914102

RESUMEN

Tuberculosis (TB) caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb) is one of the most lethal infectious diseases in the world. Presently, Bacillus Calmette-Guerin, the vaccine approved for use against TB, does not offer complete protection against the disease, which necessitates the development of new therapeutics to treat this infection. Overexpression of transforming growth factor beta (TGF-ß) is associated with pulmonary profibrotic changes. The inactive TGF-ß secreted is activated through its cleavage and release by αv integrins. Integrin-mediated regulation of TGF-ß is considered as a master switch in the profibrotic process and a potential therapeutic target. Thus, in this study, we sought to determine if treatment with a broad range antagonist of integrins, CWHM-12, has the potency to inhibit pulmonary fibrosis and enhance Mtb control in a highly susceptible mouse model of Mtb infection, namely the C3Heb/FeJ (FeJ). CWHM-12 treatment at the early stages of Mtb infection was efficacious in reducing disease severity and inflammation associated with decreased iNOS, MIP-2, and IL-10 production without degradation of collagen. This suggests a potential for CWHM-12 targeting of TGF-ß to be explored as an adjunct therapeutic for early Mtb infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Integrinas , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento Transformadores , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control
15.
Am J Respir Cell Mol Biol ; 67(1): e1-18, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35776495

RESUMEN

The mammalian airways and lungs are exposed to a myriad of inhaled particulate matter, allergens, and pathogens. The immune system plays an essential role in protecting the host from respiratory pathogens, but a dysregulated immune response during respiratory infection can impair pathogen clearance and lead to immunopathology. Furthermore, inappropriate immunity to inhaled antigens can lead to pulmonary diseases. A complex network of epithelial, neural, stromal, and immune cells has evolved to sense and respond to inhaled antigens, including the decision to promote tolerance versus a rapid, robust, and targeted immune response. Although there has been great progress in understanding the mechanisms governing immunity to respiratory pathogens and aeroantigens, we are only beginning to develop an integrated understanding of the cellular networks governing tissue immunity within the lungs and how it changes after inflammation and over the human life course. An integrated model of airway and lung immunity will be necessary to improve mucosal vaccine design as well as prevent and treat acute and chronic inflammatory pulmonary diseases. Given the importance of immunology in pulmonary research, the American Thoracic Society convened a working group to highlight central areas of investigation to advance the science of lung immunology and improve human health.


Asunto(s)
Enfermedades Pulmonares , Infecciones del Sistema Respiratorio , Animales , Humanos , Pulmón , Mamíferos , Material Particulado , Tórax
16.
Cell Rep ; 39(12): 110983, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732116

RESUMEN

Mycobacterium tuberculosis (Mtb) infects 25% of the world's population and causes tuberculosis (TB), which is a leading cause of death globally. A clear understanding of the dynamics of immune response at the cellular level is crucial to design better strategies to control TB. We use the single-cell RNA sequencing approach on lung lymphocytes derived from healthy and Mtb-infected mice. Our results show the enrichment of the type I IFN signature among the lymphoid cell clusters, as well as heat shock responses in natural killer (NK) cells from Mtb-infected mice lungs. We identify Ly6A as a lymphoid cell activation marker and validate its upregulation in activated lymphoid cells following infection. The cross-analysis of the type I IFN signature in human TB-infected peripheral blood samples further validates our results. These findings contribute toward understanding and characterizing the transcriptional parameters at a single-cell depth in a highly relevant and reproducible mouse model of TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Inmunidad , Células Asesinas Naturales , Pulmón/metabolismo , Ratones , Tuberculosis/metabolismo
17.
Cell Rep ; 39(12): 110974, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732121

RESUMEN

Severity of pulmonary viral infections, including influenza A virus (IAV), is linked to excessive immunopathology, which impairs lung function. Thus, the same immune responses that limit viral replication can concomitantly cause lung damage that must be countered by largely uncharacterized disease tolerance mechanisms. Here, we show that mitochondrial cyclophilin D (CypD) protects against IAV via disease tolerance. CypD-/- mice are significantly more susceptible to IAV infection despite comparable antiviral immunity. This susceptibility results from damage to the lung epithelial barrier caused by a reduction in interleukin-22 (IL-22)-producing natural killer (NK) cells. Transcriptomic and functional data reveal that CypD-/- NK cells are immature and have altered cellular metabolism and impaired IL-22 production, correlating with dysregulated bone marrow lymphopoiesis. Administration of recombinant IL-22 or transfer of wild-type (WT) NK cells abrogates pulmonary damage and protects CypD-/- mice after IAV infection. Collectively, these results demonstrate a key role for CypD in NK cell-mediated disease tolerance.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Mitocondrias , Infecciones por Orthomyxoviridae , Animales , Peptidil-Prolil Isomerasa F , Humanos , Interleucinas , Células Asesinas Naturales , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Interleucina-22
18.
Trends Immunol ; 43(6): 420-422, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537982

RESUMEN

Inflammatory stimuli reprogram innate immune cells to generate rigorous responses to future challenge with heterologous stimuli through trained immunity. Li et al. show that training of hematopoietic stem cells (HSCs) in the bone marrow primes cells to generate more inflammatory myeloid progeny and, thereby, mechanistically links inflammatory comorbidities.


Asunto(s)
Células Madre Hematopoyéticas , Inmunidad Innata , Médula Ósea , Humanos
19.
Am J Respir Crit Care Med ; 206(1): 94-104, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35412961

RESUMEN

Rationale: Different Mycobacterium tuberculosis (Mtb) strains exhibit variable degrees of virulence in humans and animal models. Differing stress response strategies used by different strains of Mtb could influence virulence. Objectives: We compared the virulence of two strains of Mtb with use in animal model research: CDC1551 and Erdman. Methods: Rhesus macaques, which develop human-like tuberculosis attributes and pathology, were infected with a high dose of either strain via aerosol, and virulence was compared by bacterial burden and pathology. Measurements and Main Results: Infection with Erdman resulted in significantly shorter times to euthanasia and higher bacterial burdens and greater systemic inflammation and lung pathology relative to those infected with CDC1551. Macaques infected with Erdman also exhibited significantly higher early inflammatory myeloid cell influx to the lung, greater macrophage and T cell activity, and higher expression of lung remodeling (extracellular matrix) genes, consistent with greater pathology. Expression of NOTCH4 (neurogenic locus notch homolog 4) signaling, which is induced in response to hypoxia and promotes undifferentiated cellular state, was also higher in Erdman-infected lungs. The granulomas generated by Erdman, and not CDC1551, infection appeared to have larger regions of necrosis, which is strongly associated with hypoxia. To better understand the mechanisms of differential hypoxia induction by these strains, we subjected both to hypoxia in vitro. Erdman induced higher concentrations of DosR regulon relative to CDC1551. The DosR regulon is the global regulator of response to hypoxia in Mtb and critical for its persistence in granulomas. Conclusions: Our results show that the response to hypoxia is a critical mediator of virulence determination in Mtb, with potential impacts on bacillary persistence, reactivation, and efficiency of therapeutics.


Asunto(s)
Mycobacterium tuberculosis , Animales , Granuloma , Hipoxia , Inflamación/patología , Pulmón/patología , Macaca mulatta , Mycobacterium tuberculosis/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...