Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36773, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281484

RESUMEN

In cases of brain tumors, some brain cells experience abnormal and rapid growth, leading to the development of tumors. Brain tumors represent a significant source of illness affecting the brain. Magnetic Resonance Imaging (MRI) stands as a well-established and coherent diagnostic method for brain cancer detection. However, the resulting MRI scans produce a vast number of images, which require thorough examination by radiologists. Manual assessment of these images consumes considerable time and may result in inaccuracies in cancer detection. Recently, deep learning has emerged as a reliable tool for decision-making tasks across various domains, including finance, medicine, cybersecurity, agriculture, and forensics. In the context of brain cancer diagnosis, Deep Learning and Machine Learning algorithms applied to MRI data enable rapid prognosis. However, achieving higher accuracy is crucial for providing appropriate treatment to patients and facilitating prompt decision-making by radiologists. To address this, we propose the use of Convolutional Neural Networks (CNN) for brain tumor detection. Our approach utilizes a dataset consisting of two classes: three representing different tumor types and one representing non-tumor samples. We present a model that leverages pre-trained CNNs to categorize brain cancer cases. Additionally, data augmentation techniques are employed to augment the dataset size. The effectiveness of our proposed CNN model is evaluated through various metrics, including validation loss, confusion matrix, and overall loss. The proposed approach employing ResNet50 and EfficientNet demonstrated higher levels of accuracy, precision, and recall in detecting brain tumors.

2.
Heliyon ; 10(16): e35996, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253210

RESUMEN

This study introduces the novel concept of m-polar interval-valued fuzzy hypergraph (m-PIVFHG), an advancement that combines the strengths of fuzzy theory and hypergraph models to improve decision-making processes. m-PIVFHGs allow vertices to have degrees of membership across multiple polarities within sub-interval values of [ 0 , 1 ] . This offers better adaptability and precision than traditional models. This paper systematically explores the theoretical foundations of m-PIVFHGs, detailing their unique characteristics and presenting duality concepts with illustrative examples. It also defines various cut and level types specific to m-PIVFHGs and examines their properties. The practical utility of m-PIVFHGs is demonstrated through a real-world application aimed at optimizing decision-making in a university setting, showcasing significant improvements over existing fuzzy graph methodologies.

3.
Sci Rep ; 14(1): 20153, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215117

RESUMEN

China ranks 160 out of 180 countries in terms of ecological efficiency, with an EPI score of 28.40 and a 10-year average change in score of 11.40. This article examines the impact of green finance and China's natural resources on regional ecological efficiency using the Tobit regression model. The study uses the average yearly exchange rate to normalize dollar-related values and GDP to 2012 RMB using the price deflator. Variables used as explanatory tools include green financing, the availability of natural resources, and regional eco-efficiency. The results of the study imply that natural resources in eastern region of China are better managed as and have avoided the resource curse as compared to central and western regions. Resources temporarily support area economic and social growth. However, resource agglomeration locks many elements in the resource industry and degrades regional industrial development, generating environmental and social difficulties that may hinder regional economic progress. Given that Foreign Direct Investment (FDI) increases regional eco-efficiency after accounting for adjustment. The FDI positively correlated with ecological efficiency in the east zone, while central and western zones have negative correlations. The industrial development of the nation negatively impacts ecological efficiency in the East, Midwest, and West regions. Western results are distinctive, with ecological efficiency and regional economic growth frequently going hand in hand.

4.
Heliyon ; 10(11): e32217, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947453

RESUMEN

In this article, a dual-mode, dual-polarized antenna designed using characteristic mode analysis (CMA) is described. An elliptical-shaped patch radiator is chosen with double slits on its minor axis. This design is based on mode separation from the circular patch into the elliptical patch. The suggested antenna geometry has a footprint of 60 mm × 60 mm × 1.6 mm. To design and fabricate the antenna, an FR-4 substrate with a relative permittivity of 4.3 is used, along with copper sheets 0.035 mm thick for the ground plane and the radiating plane. The circular patch has the resonating mode at 1.8 GHz, whereas the elliptical radiator gives different resonant modes at 1.8 GHz and 3.5 GHz. An orthogonal mode is excited with a 50-Ω coaxial feed line at 3.5 GHz by applying a full-wave approach. The antenna gives a -10dB bandwidth of 51 MHz (1.77-1.82 GHz) centered at 1.8 GHz and a bandwidth of 210 MHz (3.37-3.58 GHz) centered at 3.5 GHz. The working principle is explained through modal analysis and characteristic angles. This dual-band antenna covers a 1.8 GHz GSM band with horizontal polarization and a 3.5 GHz 5G service with vertical polarization. Peak gain attained with these bands is 5.9 dBi and 7.1 dBi, respectively. A CST full-wave simulator is used for the simulations. As a result of the antenna, radiation is stable and enhanced. Compared to measured results, simulation results are close to reality. The characteristic mode analysis (CMA) provides an in-depth look into different operating modes on the antenna in contrast with the conventional method, which relies on the simulated current distribution to verify functionality.

5.
Sci Rep ; 14(1): 16908, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043685

RESUMEN

Biofiltration is a method of pollution management that utilizes a bioreactor containing live material to absorb and destroy pollutants biologically. In this paper, we investigate mathematical models of biofiltration for mixing volatile organic compounds (VOCs) for instance hydrophilic (methanol) and hydrophobic ( α -pinene). The system of nonlinear diffusion equations describes the Michaelis-Menten kinetics of the enzymic chemical reaction. These models represent the chemical oxidation in the gas phase and mass transmission within the air-biofilm junction. Furthermore, for the numerical study of the saturation of α -pinene and methanol in the biofilm and gas state, we have developed an efficient supervised machine learning algorithm based on the architecture of Elman neural networks (ENN). Moreover, the Levenberg-Marquardt (LM) optimization paradigm is used to find the parameters/ neurons involved in the ENN architecture. The approximation to a solutions found by the ENN-LM technique for methanol saturation and α -pinene under variations in different physical parameters are allegorized with the numerical results computed by state-of-the-art techniques. The graphical and statistical illustration of indications of performance relative to the terms of absolute errors, mean absolute deviations, computational complexity, and mean square error validates that our results perfectly describe the real-life situation and can further be used for problems arising in chemical engineering.

6.
Sci Rep ; 14(1): 12650, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825625

RESUMEN

The proliferation of smart conurbations entails an efficient system design for managing all the crowds in public places. Multitude controlling procedures are carried out for controlling compact areas where more number of peoples is present at several groups. Therefore for controlling purpose the proposed method aims to design a pictorial representation using Internet of Things (IoT). The process is carried out by taking images and then organizing it using switching techniques in the presence of square boxes where entire populace is identified on real time experimentations. For processing and controlling the occurrence a separate architecture is designed with analytical equivalences where all data set is stored in cloud platform. Further the incorporation of system model is carried out using Switching Based Algorithm (SBA) which adds more number of columns even for high population cases. In order to verify the effectiveness of proposed model five scenarios are considered with performance evaluation metrics for SBA and all the test results provides best optimal results. Moreover the projected model is improved with an average percentage of 83 as compared to existing models.

7.
Heliyon ; 10(9): e30308, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707425

RESUMEN

Pulmonary disease identification and characterization are among the most intriguing research topics of recent years since they require an accurate and prompt diagnosis. Although pulmonary radiography has helped in lung disease diagnosis, the interpretation of the radiographic image has always been a major concern for doctors and radiologists to reduce diagnosis errors. Due to their success in image classification and segmentation tasks, cutting-edge artificial intelligence techniques like machine learning (ML) and deep learning (DL) are widely encouraged to be applied in the field of diagnosing lung disorders and identifying them using medical images, particularly radiographic ones. For this end, the researchers are concurring to build systems based on these techniques in particular deep learning ones. In this paper, we proposed three deep-learning models that were trained to identify the presence of certain lung diseases using thoracic radiography. The first model, named "CovCXR-Net", identifies the COVID-19 disease (two cases: COVID-19 or normal). The second model, named "MDCXR3-Net", identifies the COVID-19 and pneumonia diseases (three cases: COVID-19, pneumonia, or normal), and the last model, named "MDCXR4-Net", is destined to identify the COVID-19, pneumonia and the pulmonary opacity diseases (4 cases: COVID-19, pneumonia, pulmonary opacity or normal). These models have proven their superiority in comparison with the state-of-the-art models and reached an accuracy of 99,09 %, 97.74 %, and 90,37 % respectively with three benchmarks.

8.
Sci Rep ; 14(1): 10412, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710744

RESUMEN

The proposed work contains three major contribution, such as smart data collection, optimized training algorithm and integrating Bayesian approach with split learning to make privacy of the patent data. By integrating consumer electronics device such as wearable devices, and the Internet of Things (IoT) taking THz image, perform EM algorithm as training, used newly proposed slit learning method the technology promises enhanced imaging depth and improved tissue contrast, thereby enabling early and accurate disease detection the breast cancer disease. In our hybrid algorithm, the breast cancer model achieves an accuracy of 97.5 percent over 100 epochs, surpassing the less accurate old models which required a higher number of epochs, such as 165.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Dispositivos Electrónicos Vestibles , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Internet de las Cosas , Femenino , Imágen por Terahertz/métodos , Teorema de Bayes , Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático
9.
PeerJ Comput Sci ; 10: e1955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660157

RESUMEN

Background: Structural health monitoring (SHM) is a regular procedure of monitoring and recognizing changes in the material and geometric qualities of aircraft structures, bridges, buildings, and so on. The structural health of an airplane is more important in aerospace manufacturing and design. Inadequate structural health monitoring causes catastrophic breakdowns, and the resulting damage is costly. There is a need for an automated SHM technique that monitors and reports structural health effectively. The dataset utilized in our suggested study achieved a 0.95 R2 score earlier. Methods: The suggested work employs support vector machine (SVM) + extra tree + gradient boost + AdaBoost + decision tree approaches in an effort to improve performance in the delamination prediction process in aircraft construction. Results: The stacking ensemble method outperformed all the technique with 0.975 R2 and 0.023 RMSE for old coupon and 0.928 R2 and 0.053 RMSE for new coupon. It shown the increase in R2 and decrease in root mean square error (RMSE).

10.
Sci Rep ; 14(1): 8801, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627455

RESUMEN

This paper presents a study investigating the performance of functionally graded material (FGM) annular fins in heat transfer applications. An annular fin is a circular or annular structure used to improve heat transfer in various systems such as heat exchangers, electronic cooling systems, and power generation equipment. The main objective of this study is to analyze the efficiency of the ring fin in terms of heat transfer and temperature distribution. The fin surfaces are exposed to convection and radiation to dissipate heat. A supervised machine learning method was used to study the heat transfer characteristics and temperature distribution in the annular fin. In particular, a feedback architecture with the BFGS Quasi-Newton training algorithm (trainbfg) was used to analyze the solutions of the mathematical model governing the problem. This approach allows an in-depth study of the performance of fins, taking into account various physical parameters that affect its performance. To ensure the accuracy of the obtained solutions, a comparative analysis was performed using guided machine learning. The results were compared with those obtained by conventional methods such as the homotopy perturbation method, the finite difference method, and the Runge-Kutta method. In addition, a thorough statistical analysis was performed to confirm the reliability of the solutions. The results of this study provide valuable information on the behavior and performance of annular fins made from functionally graded materials. These findings contribute to the design and optimization of heat transfer systems, enabling better heat management and efficient use of available space.

11.
Sci Rep ; 14(1): 3288, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332219

RESUMEN

Design closure and parameter optimisation are crucial in creating cutting-edge antennas. Antenna performance can be improved by fine-tuning preliminary designs created using theoretical considerations and rough dimension adjustment via supervised parameter sweeps. This paper introduces a frequency reconfigurable antenna design that can operate at 28/38 GHz frequencies to meet FCC and Ofcom standards for 5G applications and in the 18 GHz frequency band for K-band radar applications. A PIN diode is used in this design to configure multiple frequency bands. The antenna has a modified rectangular patch-like structure and two optimised plugins on either side. The study that is being presented focuses on maximising the parameters that are subject to optimisation, including length (Ls), width (Ws), strip line width (W1), and height (ht), where the antenna characteristic parameters such as directivity is tuned by a hybrid optimisation scheme called Elephant Clan Updated Grey Wolf Algorithm (ECU-GWA). Here, the performance of gain and directivity are optimally attained by considering parameters such as length, width, ground plane length, width, height, and feed offsets X and Y. The bandwidth of the proposed antenna at - 10 dB is 0.8 GHz, 1.94 GHz, and 7.92 GHz, respectively, at frequencies 18.5 GHz, 28.1 GHz, and 38.1 GHz. Also, according to the simulation results, in the 18 GHz, 28 GHz, and 38 GHz frequencies S11, the return loss is - 60.81 dB, - 56.31 dB, and - 14.19 dB, respectively. The proposed frequency reconfigurable antenna simulation results achieve gains of 4.41 dBi, 6.33 dBi, and 7.70 dBi at 18.5 GHz, 28.1 GHz, and 38.1 GHz, respectively. Also, a microstrip quarter-wave monopole antenna with an ellipsoidal-shaped complementary split-ring resonator-electromagnetic bandgap structure (ECSRR-EBG) structure has been designed based on a genetic algorithm having resonating at 2.9 GHz, 4.7 GHz, 6 GHz for WLAN applications. The gain of the suggested ECSRR metamaterial and EBG periodic structure, with and without the ECCSRR bow-tie antenna. This is done both in the lab and with numbers. The measured result shows that the ECSRR metamaterial boosts gain by 5.2 dBi at 5.9 GHz. At 5.57 GHz, the two-element MIMO antenna achieves its lowest ECC of 0.00081.

12.
Heliyon ; 9(12): e22844, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144343

RESUMEN

The crucial aspect of the medical sector is healthcare in today's modern society. To analyze a massive quantity of medical information, a medical system is necessary to gain additional perspectives and facilitate prediction and diagnosis. This device should be intelligent enough to analyze a patient's state of health through social activities, individual health information, and behavior analysis. The Health Recommendation System (HRS) has become an essential mechanism for medical care. In this sense, efficient healthcare networks are critical for medical decision-making processes. The fundamental purpose is to maintain that sensitive information can be shared only at the right moment while guaranteeing the effectiveness of data, authenticity, security, and legal concerns. As some people use social media to recognize their medical problems, healthcare recommendation systems need to generate findings like diagnosis recommendations, medical insurance, medical passageway-based care strategies, and homeopathic remedies associated with a patient's health status. New studies aimed at the use of vast numbers of health information by integrating multidisciplinary data from various sources are addressed, which also decreases the burden and health care costs. This article presents a recommended intelligent HRS using the deep learning system of the Restricted Boltzmann Machine (RBM)-Coevolutionary Neural Network (CNN) that provides insights on how data mining techniques could be used to introduce an efficient and effective health recommendation systems engine and highlights the pharmaceutical industry's ability to translate from either a conventional scenario towards a more personalized. We developed our proposed system using TensorFlow and Python. We evaluate the suggested method's performance using distinct error quantities compared to alternative methods using the health care dataset. Furthermore, the suggested approach's accuracy, precision, recall, and F-measure were compared with the current methods.

13.
Heliyon ; 9(9): e19451, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37681146

RESUMEN

For Orthogonal Frequency Division Multiplexing (OFDM) systems, the most significant problem is the peak-to-average power ratio. The utilisation of partial transmission sequence, often known as PTS, is an efficient method for reducing PAPR. When it comes to minimizing the peak-to-average power ratio (PAPR) in Orthogonal Frequency Division Multiplexing (OFDM) Systems, PTS is one of the most effective approaches that may be used. Due to the substantial data load, using peak-to-average power ratio in OFDM is challenging. The most crucial problem with OFDM is achieving better results by lowering PAPR. Provide a PTS in this research that is based on the Chaotic Biogeography Based Optimization (CBBO) algorithm to effectively address the high PAPR issue that exists in Generalized Frequency Division Multiplexing (GFDM) waveforms using Hermitian Symmetry property is used. The Hermitian symmetry is utilised in order to acquire a real-valued time-domain signal. Phase rotation factor combinations are carried out in an effective and optimal manner through the utilisation of an innovative combination of optimization techniques. In comparison to conventional optimization techniques, a new hybrid optimization offers quick convergence quality and minimal complexity. When compared to traditional PTS methods such traditional GFDM and OFDM-PTS, experimental results demonstrate that the suggested CBBO-PTS technique significantly improves on minimizing PAPR.

14.
Bioengineering (Basel) ; 10(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36978724

RESUMEN

Due to rapidly developing technology and new research innovations, privacy and data preservation are paramount, especially in the healthcare industry. At the same time, the storage of large volumes of data in medical records should be minimized. Recently, several types of research on lossless medically significant data compression and various steganography methods have been conducted. This research develops a hybrid approach with advanced steganography, wavelet transform (WT), and lossless compression to ensure privacy and storage. This research focuses on preserving patient data through enhanced security and optimized storage of large data images that allow a pharmacologist to store twice as much information in the same storage space in an extensive data repository. Safe storage, fast image service, and minimum computing power are the main objectives of this research. This work uses a fast and smooth knight tour (KT) algorithm to embed patient data into medical images and a discrete WT (DWT) to protect shield images. In addition, lossless packet compression is used to minimize memory footprints and maximize memory efficiency. JPEG formats' compression ratio percentages are slightly higher than those of PNG formats. When image size increases, that is, for high-resolution images, the compression ratio lies between 7% and 7.5%, and the compression percentage lies between 30% and 37%. The proposed model increases the expected compression ratio and percentage compared to other models. The average compression ratio lies between 7.8% and 8.6%, and the expected compression ratio lies between 35% and 60%. Compared to state-of-the-art methods, this research results in greater data security without compromising image quality. Reducing images makes them easier to process and allows many images to be saved in archives.

15.
Bioengineering (Basel) ; 10(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36978754

RESUMEN

Recently, various methods have been developed to identify COVID-19 cases, such as PCR testing and non-contact procedures such as chest X-rays and computed tomography (CT) scans. Deep learning (DL) and artificial intelligence (AI) are critical tools for early and accurate detection of COVID-19. This research explores the different DL techniques for identifying COVID-19 and pneumonia on medical CT and radiography images using ResNet152, VGG16, ResNet50, and DenseNet121. The ResNet framework uses CT scan images with accuracy and precision. This research automates optimum model architecture and training parameters. Transfer learning approaches are also employed to solve content gaps and shorten training duration. An upgraded VGG16 deep transfer learning architecture is applied to perform multi-class classification for X-ray imaging tasks. Enhanced VGG16 has been proven to recognize three types of radiographic images with 99% accuracy, typical for COVID-19 and pneumonia. The validity and performance metrics of the proposed model were validated using publicly available X-ray and CT scan data sets. The suggested model outperforms competing approaches in diagnosing COVID-19 and pneumonia. The primary outcomes of this research result in an average F-score (95%, 97%). In the event of healthy viral infections, this research is more efficient than existing methodologies for coronavirus detection. The created model is appropriate for recognition and classification pre-training. The suggested model outperforms traditional strategies for multi-class categorization of various illnesses.

16.
Entropy (Basel) ; 24(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36359691

RESUMEN

Multiple-input Multiple-Output (MIMO) systems require orthogonal frequency division multiplexing to operate efficiently in multipath communication (OFDM). Channel estimation (C.E.) is used in channel conditions where time-varying features are required. The existing channel estimation techniques are highly complicated. A channel estimation algorithm is needed to estimate the received signal's correctness. In order to resolve this complexity in C.E. methodologies, this paper developed an Improved Channel Estimation Algorithm integrated with DFT-LS-WIENER (ICEA-DA). The Least Square (L.S.) and Minimum Mean Square Error (MMSE) algorithms also use the Discrete Fourier Transform (DFT)-based channel estimation method. The DFT-LS-WIENER channel estimation approach is recommended for better BER performance. The input signal is modulated in the transmitter module using the Quadrature Phase Shift Keying (QPSK) technique, pulse modeling, and least squares concepts. The L.S. Estimation technique needs the channel consistent throughout the estimation period. DFT joined with L.S. gives higher estimation precision and limits M.S.E. and BER. Experimental analysis of the proposed state-of-the-art method shows that DFT-LS-WIENER provides superior performance in terms of symbol error rate (S.E.R.), bit error rate (BER), channel capacity (CC), and peak signal-to-noise (PSNR). At 15 dB SNR, the proposed DFT-LS-WIENER techniques reduce the BER of 48.19%, 38.19%, 14.8%, and 14.03% compared to L.S., LS-DFT, MMSE, and MMSE-DFT. Compared to the conventional algorithm, the proposed DFT-LS-WIENER outperform them.

17.
Sensors (Basel) ; 22(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35746256

RESUMEN

Wireless Underground Sensor Networks (WUSNs) have been showing prospective supervising application domains in the underground region of the earth through sensing, computation, and communication. This paper presents a novel Deep Learning (DL)-based Cooperative communication channel model for Wireless Underground Sensor Networks for accurate and reliable monitoring in hostile underground locations. Furthermore, the proposed communication model aims at the effective utilization of cluster-based Cooperative models through the relay nodes. However, by keeping the cost effectiveness, reliability, and user-friendliness of wireless underground sensor networks through inter-cluster Cooperative transmission between two cluster heads, the determination of the overall energy performance is also measured. The energy co-operative channel allocation routing (ECCAR), Energy Hierarchical Optimistic Routing (EHOR), Non-Cooperative, and Dynamic Energy Routing (DER) methods were used to figure out how well the proposed WUSN works. The Quality of Service (QoS) parameters such as transmission time, throughput, packet loss, and efficiency were used in order to evaluate the performance of the proposed WUSNs. From the simulation results, it is apparently seen that the proposed system demonstrates some superiority over other methods in terms of its better energy utilization of 89.71%, Packet Delivery ratio of 78.2%, Average Packet Delay of 82.3%, Average Network overhead of 77.4%, data packet throughput of 83.5% and an average system packet loss of 91%.


Asunto(s)
Redes de Comunicación de Computadores , Aprendizaje Profundo , Algoritmos , Comunicación , Estudios Prospectivos , Reproducibilidad de los Resultados , Tecnología Inalámbrica
18.
Comput Intell Neurosci ; 2022: 3098604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755731

RESUMEN

When it comes to conveying sentiments and thoughts, facial expressions are quite effective. For human-computer collaboration, data-driven animation, and communication between humans and robots to be successful, the capacity to recognize emotional states in facial expressions must be developed and implemented. Recently published studies have found that deep learning is becoming increasingly popular in the field of image categorization. As a result, to resolve the problem of facial expression recognition (FER) using convolutional neural networks (CNN), increasingly substantial efforts have been made in recent years. Facial expressions may be acquired from databases like CK+ and JAFFE using this novel FER technique based on activations, optimizations, and regularization parameters. The model recognized emotions such as happiness, sadness, surprise, fear, anger, disgust, and neutrality. The performance of the model was evaluated using a variety of methodologies, including activation, optimization, and regularization, as well as other hyperparameters, as detailed in this study. In experiments, the FER technique may be used to recognize emotions with an Adam, Softmax, and Dropout Ratio of 0.1 to 0.2 when combined with other techniques. It also outperforms current FER techniques that rely on handcrafted features and only one channel, as well as has superior network performance compared to the present state-of-the-art techniques.


Asunto(s)
Expresión Facial , Reconocimiento Facial , Ira , Emociones/fisiología , Humanos , Redes Neurales de la Computación
19.
Sensors (Basel) ; 22(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35458850

RESUMEN

Underwater wireless sensor networks (UWSNs) have applications in several fields, such as disaster management, underwater navigation, and environment monitoring. Since the nodes in UWSNs are restricted to inbuilt batteries, the effective utilization of available energy becomes essential. Clustering and routing approaches can be employed as energy-efficient solutions for UWSNs. However, the cluster-based routing techniques developed for conventional wireless networks cannot be employed for a UWSN because of the low bandwidth, spread stay, underwater current, and error probability. To resolve these issues, this article introduces a novel chaotic search-and-rescue-optimization-based multi-hop data transmission (CSRO-MHDT) protocol for UWSNs. When using the CSRO-MHDT technique, cluster headers (CHs) are selected and clusters are prearranged, rendering a range of features, including remaining energy, intracluster distance, and intercluster detachment. Additionally, the chaotic search and rescue optimization (CSRO) algorithm is discussed, which is created by incorporating chaotic notions into the classic search and rescue optimization (SRO) algorithm. In addition, the CSRO-MHDT approach calculates a fitness function that takes residual energy, distance, and node degree into account, among other factors. A distinctive aspect of the paper is demonstrated by the development of the CSRO algorithm for route optimization, which was developed in-house. To validate the success of the CSRO-MHDT method, a sequence of tests were carried out, and the results showed the CSRO-MHDT method to have a packet delivery ratio (PDR) of 88%, whereas the energy-efficient clustering routing protocol (EECRP), the fuzzy C-means and moth-flame optimization (FCMMFO), the fuzzy scheme and particle swarm optimization (FBCPSO), the energy-efficient grid routing based on 3D cubes (EGRC), and the low-energy adaptive clustering hierarchy based on expected residual energy (LEACH-ERE) methods have reached lesser PDRs of 83%, 81%, 78%, 77%, and 75%, respectively, for 1000 rounds. The CSRO-MHDT technique resulted in higher values of number of packets received (NPR) under all rounds. For instance, with 50 rounds, the CSRO-MHDT technique attained a higher NPR of 3792%.

20.
Front Public Health ; 10: 829519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433625

RESUMEN

Diabetes is considered to be one of the leading causes of death globally. If diabetes is not treated and detected early, it can lead to a variety of complications. The aim of this study was to develop a model that can accurately predict the likelihood of developing diabetes in patients with the greatest amount of precision. Classification algorithms are widely used in the medical field to classify data into different categories based on some criteria that are relatively restrictive to the individual classifier, Therefore, four machine learning classification algorithms, namely supervised learning algorithms (Random forest, SVM and Naïve Bayes, Decision Tree DT) and unsupervised learning algorithm (k-means), have been a technique that was utilized in this investigation to identify diabetes in its early stages. The experiments are per-formed on two databases, one extracted from the Frankfurt Hospital in Germany and the other from the database. PIMA Indian Diabetes (PIDD) provided by the UCI machine learning repository. The results obtained from the database extracted from Frankfurt Hospital, Germany, showed that the random forest algorithm outperformed with the highest accuracy of 97.6%, and the results obtained from the Pima Indian database showed that the SVM algorithm outperformed with the highest accuracy of 83.1% compared to other algorithms. The validity of these results is confirmed by the process of separating the data set into two parts: a training set and a test set, which is described below. The training set is used to develop the model's capabilities. The test set is used to put the model through its paces and determine its correctness.


Asunto(s)
Diabetes Mellitus , Yoduro de Potasio , Algoritmos , Teorema de Bayes , Humanos , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA