Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 1): 135555, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276881

RESUMEN

This study addresses the dual challenge of agricultural cost and waste management by harnessing agrarian waste to produce nano-fertilizers (NF) to enhance crop yield while mitigating environmental impacts. Recognizing the limitations of traditional hydrogels' non-biodegradability and their inability to sustain root zone moisture and nutrient levels, we developed an LNR/AAc/pectin hydrogel. This innovative hydrogel offers a viable solution that provides a consistent NF supply and improves water retention efficiently. Additionally, we utilized Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and thermogravimetric analysis (TGA) to analyze the hydrogel's structure, stability, and form. Transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF) were employed to ascertain the NF concentration. The optimization of the hydrogel's swelling and NF release was conducted through a 5-level, 2-factor Response Surface Methodology (RSM), focusing on the effects of the AAc: LNR ratio and pectin weight while maintaining constant concentrations of potassium persulfate (KPS) and MBA. Results revealed a high correlation between predicted and experimental values, with determination coefficients (R2) of 0.9982 for swelling and 0.9979 for NF release. Furthermore, the hydrogel exhibited a 96.30 % biodegradation rate after 120 days of soil burial. Our findings demonstrate the hydrogels' potential to significantly impact farming and gardening by ensuring a sustainable supply of nutrients to enhance soil moisture retention.

2.
Appl Biochem Biotechnol ; 195(11): 6708-6736, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36913095

RESUMEN

Enzymatic halogenation captures scientific interest considering its feasibility in modifying compounds for chemical diversity. Currently, majority of flavin-dependent halogenases (F-Hals) were reported from bacterial origin, and as far as we know, none from lichenized fungi. Fungi are well-known producers of halogenated compounds, so using available transcriptomic dataset of Dirinaria sp., we mined for putative gene encoding for F-Hal. Phylogenetic-based classification of the F-Hal family suggested a non-tryptophan F-Hals, similar to other fungal F-Hals, which mainly act on aromatic compounds. However, after the putative halogenase gene from Dirinaria sp., dnhal was codon-optimized, cloned, and expressed in Pichia pastoris, the ~63 kDa purified enzyme showed biocatalytic activity towards tryptophan and an aromatic compound methyl haematommate, which gave the tell-tale isotopic pattern of a chlorinated product at m/z 239.0565 and 241.0552; and m/z 243.0074 and 245.0025, respectively. This study is the start of understanding the complexities of lichenized fungal F-hals and its ability to halogenate tryptophan and other aromatic. compounds which can be used as green alternatives for biocatalysis of halogenated compounds.


Asunto(s)
Líquenes , Oxidorreductasas , Oxidorreductasas/metabolismo , Líquenes/metabolismo , Triptófano/metabolismo , Filogenia , Halogenación , Compuestos Orgánicos , Flavinas/genética , Flavinas/metabolismo
3.
Chem Sci ; 6(8): 4837-4845, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142718

RESUMEN

The ACE1 and RAP1 genes from the avirulence signalling gene cluster of the rice blast fungus Magnaporthe oryzae were expressed in Aspergillus oryzae and M. oryzae itself. Expression of ACE1 alone produced a polyenyl pyrone (magnaporthepyrone), which is regioselectively epoxidised and hydrolysed to give different diols, 6 and 7, in the two host organisms. Analysis of the three introns present in ACE1 determined that A. oryzae does not process intron 2 correctly, while M. oryzae processes all introns correctly in both appressoria and mycelia. Co-expression of ACE1 and RAP1 in A. oryzae produced an amide 8 which is similar to the PKS-NRPS derived backbone of the cytochalasans. Biological testing on rice leaves showed that neither the diols 6 and 7, nor amide 8 was responsible for the observed ACE1 mediated avirulence, however, gene cluster analysis suggests that the true avirulence signalling compound may be a tyrosine-derived cytochalasan compound.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA