Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
APL Bioeng ; 7(3): 036106, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37584027

RESUMEN

Drug-induced nephrotoxicity is a leading cause of drug attrition, partly due to the limited relevance of pre-clinical models of the proximal tubule. Culturing proximal tubule epithelial cells (PTECs) under fluid flow to mimic physiological shear stress has been shown to improve select phenotypes, but existing flow systems are expensive and difficult to implement by non-experts in microfluidics. Here, we designed and fabricated an accessible and modular flow system for culturing PTECs under physiological shear stress, which induced native-like cuboidal morphology, downregulated pathways associated with hypoxia, stress, and injury, and upregulated xenobiotic metabolism pathways. We also compared the expression profiles of shear-dependent genes in our in vitro PTEC tissues to that of ex vivo proximal tubules and observed stronger clustering between ex vivo proximal tubules and PTECs under physiological shear stress relative to PTECs under negligible shear stress. Together, these data illustrate the utility of our user-friendly flow system and highlight the role of shear stress in promoting native-like morphological and transcriptomic phenotypes in PTECs in vitro, which is critical for developing more relevant pre-clinical models of the proximal tubule for drug screening or disease modeling.

2.
Sci Adv ; 8(49): eabn7097, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36475790

RESUMEN

After a myocardial infarction, the boundary between the injured, hypoxic tissue and the adjacent viable, normoxic tissue, known as the border zone, is characterized by an oxygen gradient. Yet, the impact of an oxygen gradient on cardiac tissue function is poorly understood, largely due to limitations of existing experimental models. Here, we engineered a microphysiological system to controllably expose engineered cardiac tissue to an oxygen gradient that mimics the border zone and measured the effects of the gradient on electromechanical function and the transcriptome. The gradient delayed calcium release, reuptake, and propagation; decreased diastolic and peak systolic stress; and increased expression of inflammatory cascades that are hallmarks of myocardial infarction. These changes were distinct from those observed in tissues exposed to uniform normoxia or hypoxia, demonstrating distinct regulation of cardiac tissue phenotypes by an oxygen gradient. Our border-zone-on-a-chip model advances functional and mechanistic insight into oxygen-dependent cardiac tissue pathophysiology.

3.
Cell Rep Methods ; 2(12): 100350, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36590684

RESUMEN

Gamma-delta (γδ) T cells contribute to the pathology of many immune-related diseases; however, no ex vivo assays to study their activities are currently available. Here, we established a methodology to characterize human allergen-reactive γδ T cells in peripheral blood using an activation-induced marker assay targeting upregulated 4-1BB and CD69 expression. Broad and reproducible ex vivo allergen-reactive γδ T cell responses were detected in donors sensitized to mouse, cockroach, house dust mite, and timothy grass, but the response did not differ from that in non-allergic participants. The reactivity to 4 different allergen extracts was readily detected in 54.2%-100% of allergic subjects in a donor- and allergen-specific pattern and was abrogated by T cell receptor (TCR) blocking. Analysis of CD40L upregulation and intracellular cytokine staining revealed a T helper type 1 (Th1)-polarized response against mouse and cockroach extract stimulation. These results support the existence of allergen-reactive γδ T cells and their potential use in rebalancing dysregulated Th2 responses in allergic diseases.


Asunto(s)
Hipersensibilidad , Linfocitos Intraepiteliales , Humanos , Animales , Ratones , Alérgenos , Citocinas/metabolismo , Linfocitos Intraepiteliales/metabolismo
4.
Front Cardiovasc Med ; 8: 709871, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336962

RESUMEN

Myocardial infarctions are one of the most common forms of cardiac injury and death worldwide. Infarctions cause immediate necrosis in a localized region of the myocardium, which is followed by a repair process with inflammatory, proliferative, and maturation phases. This repair process culminates in the formation of scar tissue, which often leads to heart failure in the months or years after the initial injury. In each reparative phase, the infarct microenvironment is characterized by distinct biochemical, physical, and mechanical features, such as inflammatory cytokine production, localized hypoxia, and tissue stiffening, which likely each contribute to physiological and pathological tissue remodeling by mechanisms that are incompletely understood. Traditionally, simplified two-dimensional cell culture systems or animal models have been implemented to elucidate basic pathophysiological mechanisms or predict drug responses following myocardial infarction. However, these conventional approaches offer limited spatiotemporal control over relevant features of the post-infarct cellular microenvironment. To address these gaps, Organ on a Chip models of post-infarct myocardium have recently emerged as new paradigms for dissecting the highly complex, heterogeneous, and dynamic post-infarct microenvironment. In this review, we describe recent Organ on a Chip models of post-infarct myocardium, including their limitations and future opportunities in disease modeling and drug screening.

5.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33690224

RESUMEN

The increased incidence of whooping cough worldwide suggests that current vaccination against Bordetella pertussis infection has limitations in quality and duration of protection. The resurgence of infection has been linked to the introduction of acellular vaccines (aP), which have an improved safety profile compared with the previously used whole-cell (wP) vaccines. To determine immunological differences between aP and wP priming in infancy, we performed a systems approach of the immune response to booster vaccination. Transcriptomic, proteomic, cytometric, and serologic profiling revealed multiple shared immune responses with different kinetics across cohorts, including an increase of blood monocyte frequencies and strong antigen-specific IgG responses. Additionally, we found a prominent subset of aP-primed individuals (30%) with a strong differential signature, including higher levels of expression for CCL3, NFKBIA, and ICAM1. Contrary to the wP individuals, this subset displayed increased PT-specific IgE responses after boost and higher antigen-specific IgG4 and IgG3 antibodies against FHA and FIM2/3 at baseline and after boost. Overall, the results show that, while broad immune response patterns to Tdap boost overlap between aP- and wP-primed individuals, a subset of aP-primed individuals present a divergent response. These findings provide candidate targets to study the causes and correlates of waning immunity after aP vaccination.


Asunto(s)
Inmunidad Humoral/efectos de los fármacos , Inmunización Secundaria , Neutrófilos/efectos de los fármacos , Vacuna contra la Tos Ferina/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Bordetella pertussis/inmunología , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Citocinas/sangre , Citocinas/inmunología , Expresión Génica/efectos de los fármacos , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/inmunología , Neutrófilos/inmunología , Neutrófilos/fisiología , Vacuna contra la Tos Ferina/farmacología , Vacunas Acelulares/inmunología , Vacunas Acelulares/farmacología
6.
Lab Chip ; 21(4): 674-687, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33439202

RESUMEN

Controlled electrical stimulation is essential for evaluating the physiology of cardiac tissues engineered in heart-on-a-chip devices. However, existing stimulation techniques, such as external platinum electrodes or opaque microelectrode arrays patterned on glass substrates, have limited throughput, reproducibility, or compatibility with other desirable features of heart-on-a-chip systems, such as the use of tunable culture substrates, imaging accessibility, or enclosure in a microfluidic device. In this study, indium tin oxide (ITO), a conductive, semi-transparent, and biocompatible material, was deposited onto glass and polydimethylsiloxane (PDMS)-coated coverslips as parallel or point stimulation electrodes using laser-cut tape masks. ITO caused substrate discoloration but did not prevent brightfield imaging. ITO-patterned substrates were microcontact printed with arrayed lines of fibronectin and seeded with neonatal rat ventricular myocytes, which assembled into aligned cardiac tissues. ITO deposited as parallel or point electrodes was connected to an external stimulator and used to successfully stimulate micropatterned cardiac tissues to generate calcium transients or propagating calcium waves, respectively. ITO electrodes were also integrated into the cantilever-based muscular thin film (MTF) assay to stimulate and quantify the contraction of micropatterned cardiac tissues. To demonstrate the potential for multiple ITO electrodes to be integrated into larger, multiplexed systems, two sets of ITO electrodes were deposited onto a single substrate and used to stimulate the contraction of distinct micropatterned cardiac tissues independently. Collectively, these approaches for integrating ITO electrodes into heart-on-a-chip devices are relatively facile, modular, and scalable and could have diverse applications in microphysiological systems of excitable tissues.


Asunto(s)
Dispositivos Laboratorio en un Chip , Compuestos de Estaño , Animales , Dimetilpolisiloxanos , Ratas , Reproducibilidad de los Resultados
7.
FASEB J ; 34(9): 11562-11576, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652761

RESUMEN

In skeletal muscle fibers, mitochondria are densely packed adjacent to myofibrils because adenosine triphosphate (ATP) is needed to fuel sarcomere shortening. However, despite this close physical and biochemical relationship, the effects of mitochondrial dynamics on skeletal muscle contractility are poorly understood. In this study, we analyzed the effects of Mitochondrial Division Inhibitor 1 (mdivi-1), an inhibitor of mitochondrial fission, on the structure and function of both mitochondria and myofibrils in skeletal muscle tissues engineered on micromolded gelatin hydrogels. Treatment with mdivi-1 did not alter myotube morphology, but did increase the mitochondrial turbidity and oxidative capacity, consistent with reduced mitochondrial fission. Mdivi-1 also significantly increased basal, twitch, and tetanus stresses, as measured using the Muscular Thin Film (MTF) assay. Finally, mdivi-1 increased sarcomere length, potentially due to mdivi-1-induced changes in mitochondrial volume and compression of myofibrils. Together, these results suggest that mdivi-1 increases contractile stress generation, which may be caused by an increase in maximal respiration and/or sarcomere length due to increased volume of individual mitochondria. These data reinforce that mitochondria have both biochemical and biomechanical roles in skeletal muscle and that mitochondrial dynamics can be manipulated to alter muscle contractility.


Asunto(s)
Mitocondrias Musculares/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Quinazolinonas/farmacología , Animales , Línea Celular , Dinaminas/metabolismo , Ratones , Mitocondrias Musculares/metabolismo , Dinámicas Mitocondriales/fisiología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Sarcómeros/fisiología
8.
J Clin Invest ; 128(9): 3853-3865, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29920186

RESUMEN

In the mid-1990s, whole-cell pertussis (wP) vaccines were associated with local and systemic adverse events that prompted their replacement with acellular pertussis (aP) vaccines in many high-income countries. In the past decade, rates of pertussis disease have increased in children receiving only aP vaccines. We compared the immune responses to aP boosters in individuals who received their initial doses with either wP or aP vaccines using activation-induced marker (AIM) assays. Specifically, we examined pertussis-specific memory CD4+ T cell responses ex vivo, highlighting a type 2/Th2 versus type 1/Th1 and Th17 differential polarization as a function of childhood vaccination. Remarkably, after a contemporary aP booster, cells from donors originally primed with aP were (a) associated with increased IL-4, IL-5, IL-13, IL-9, and TGF-ß and decreased IFN-γ and IL-17 production, (b) defective in their ex vivo capacity to expand memory cells, and (c) less capable of proliferating in vitro. These differences appeared to be T cell specific, since equivalent increases of antibody titers and plasmablasts after aP boost were seen in both groups. In conclusion, our data suggest that there are long-lasting effects and differences in polarization and proliferation of T cell responses in adults originally vaccinated with aP compared with those that initially received wP, despite repeated acellular boosters.


Asunto(s)
Vacuna contra la Tos Ferina/administración & dosificación , Vacuna contra la Tos Ferina/inmunología , Células TH1/inmunología , Células Th17/inmunología , Adolescente , Adulto , Anticuerpos Antibacterianos/sangre , Bordetella pertussis/inmunología , Niño , Preescolar , Citocinas/sangre , Femenino , Humanos , Esquemas de Inmunización , Inmunización Secundaria , Memoria Inmunológica , Lactante , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Transcriptoma , Vacunas Acelulares/administración & dosificación , Vacunas Acelulares/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...