Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(4): e202316469, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38051820

RESUMEN

Skutterudites are of high interest in current research due to their diversity of structures comprising empty, partially filled and filled variants, mostly based on metallic compounds. We herein present Ba12 [BN2 ]6.67 H4 , forming a non-metallic filled anti-skutterudite. It is accessed in a solid-state ampoule reaction from barium subnitride, boron nitride and barium hydride at 750 °C. Single-crystal X-ray and neutron powder diffraction data allowed to elucidate the structure in the cubic space group Im 3 ‾ ${\bar{3}}$ (no. 204). The barium and hydride atoms form a three-dimensional network consisting of corner-sharing HBa6 octahedra and Ba12 icosahedra. Slightly bent [BN2 ]3- units are located in the icosahedra and the voids in-between. 1 H and 11 B magic angle spinning (MAS) NMR experiments and vibrational spectroscopy further support the structure model. Quantum chemical calculations coincide well with experimental results and provide information about the electronic structure of Ba12 [BN2 ]6.67 H4 .

2.
Adv Sci (Weinh) ; 11(9): e2307766, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103011

RESUMEN

Materials properties are determined by their compositions and structures. In ABO3 oxides different cation orderings lead to mainly perovskite- or corundum like derivatives with exciting physical properties. Sometimes, a material can be stabilized in more than one structural modification, providing a unique opportunity to explore structure-properties relationship. Here, CoVO3 obtained in both ilmenite-(CoVO3 -I) and LiNbO3 -type (CoVO3 -II) polymorphs at moderate (8-12 GPa) and high pressures (22 GPa), respectively are presented. Their distinctive cation distributions affect drastically the magnetic properties as CoVO3 -II shows a cluster-glass behavior while CoVO3 -I hosts a honeycomb zigzag magnetic structure in the cobalt network. First principles calculations show that the influence of vanadium is crucial for CoVO3 -I, although it is previously considered as non-magnetic in a dimerized spin-singlet state. Contrarily, CoVO3 -II shows two independent interpenetrating antiferromagnetic Co- and ferromagnetic V-hcp sublattices, which intrinsically frustrate any possible magnetic order. CoVO3 -II is also remarkable as the first oxide crystallizing with the LiNbO3 -type structure where both metals contain free d electrons. CoVO3 polymorphs pinpoint therefore as well to a much broader phase field of high-pressure A-site Cobaltites.

3.
Angew Chem Int Ed Engl ; 62(50): e202313564, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37905748

RESUMEN

Multianionic metal hydrides, which exhibit a wide variety of physical properties and complex structures, have recently attracted growing interest. Here we present Sr6 N[BN2 ]2 H3 , prepared in a solid-state ampoule reaction at 800 °C, as the first combination of nitridoborate, nitride and hydride anions within a single compound. The crystal structure was solved from single-crystal X-ray and neutron powder diffraction data in space group P21 /c (no. 14), revealing a three-dimensional network of undulated layers of nitridoborate units, strontium atoms and hydride together with nitride anions. Magic angle spinning (MAS) NMR and vibrational spectroscopy in combination with quantum chemical calculations further confirm the structure model. Electrochemical measurements suggest the existence of hydride ion conductivity, allowing the hydrides to migrate along the layers.

4.
Angew Chem Int Ed Engl ; 62(29): e202305994, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37199102

RESUMEN

We show that cation ordering on A site columns, oppositely displaced via coupling to B site octahedral tilts, results in a polar phase of the columnar perovskite (NaY)MnMnTi4 O12 . This scheme is similar to hybrid improper ferroelectricity found in layered perovskites, and can be considered a realisation of hybrid improper ferroelectricity in columnar perovskites. The cation ordering is controlled by annealing temperature and when present it also polarises the local dipoles associated with pseudo-Jahn-Teller active Mn2+ ions to establish an additional ferroelectric order out of an otherwise disordered dipolar glass. Below TN ≈12 K, Mn2+ spins order, making the columnar perovskites rare systems in which ordered electric and magnetic dipoles may reside on the same transition metal sublattice.

5.
Chemistry ; 29(41): e202301241, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37223991

RESUMEN

Metal hydrides are an uprising compound class bringing up various functional materials. Due to the low X-ray scattering power of hydrogen, neutron diffraction is often crucial to fully disclose the structural characteristics thereof. We herein present the second strontium nitridoborate hydride known so far, Sr13 [BN2 ]6 H8 , formed in a solid-state reaction of the binary nitrides and strontium hydride at 950 °C. The crystal structure was elucidated based on single-crystal X-ray and neutron powder diffraction in the hexagonal space group P63 /m (no. 176), exhibiting a novel three-dimensional network of [BN2 ]3- units and hydride anions connected by strontium cations. Further analyses with magic angle spinning (MAS) NMR and vibrational spectroscopy corroborate the presence of anionic hydrogen within the structure. Quantum chemical calculations reveal the electronic properties and support the experimental outcome. Sr13 [BN2 ]6 H8 expands the emerging family of nitridoborate hydrides, broadening the access to an open field of new, intriguing materials.

6.
Phys Chem Chem Phys ; 25(6): 4862-4871, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36692371

RESUMEN

The 1111 compounds with an alternating sequence of fluorite and antifluorite layers serve as structural hosts for the vast family of Fe-based superconductors. Here, we use neutron powder diffraction and density-functional-theory (DFT) band-structure calculations to study magnetic order of Eu2+ in the [EuF]+ fluorite layers depending on the nature of the [TAs]- antifluorite layer that can be non-magnetic semiconducting (T = Zn), magnetic semiconducting (T = Mn), or magnetic metallic (T = Fe). Antiferromagnetic transitions at TN ∼ 2.4-3 K due to an ordering of the Eu2+ magnetic moments were confirmed in all three EuTAsF compounds. Whereas in EuTAsF (T = Zn and Mn), the commensurate k1 = (½ ½ 0) stripe order pattern with magnetic moments within the a-b plane is observed, the order in EuFeAsF is incommensurate with k = (0 0.961(1) ½) and represents a cycloid of Eu2+ magnetic moments confined within the bc-plane. Additionally, the Mn2+ sublattice in EuMnAsF features a robust G-type antiferromagnetic order that persists at least up to room temperature, with magnetic moments along the c-direction. Although DFT calculations suggest stripe antiferromagnetic order in the Fe-sublattice of EuFeAsF as the ground state, neutron diffraction reveals no evidence of long-range magnetic order associated with Fe. We show that the frustrating interplane interaction J3 between the adjacent [EuF]+ layers is comparable with in-plane J1-J2 interactions already in the case of semiconducting fluorite layers [TAs]- (T = Zn and Mn) and becomes dominant in the case of the metallic [FeAs]- ones. The latter, along with a slight orthorhombic distortion, is proposed to be the origin of the incommensurate magnetic structure observed in EuFeAsF.

7.
Phys Rev Lett ; 129(21): 217601, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36461960

RESUMEN

According to previous theoretical work, the binary oxide CuO can become a room-temperature multiferroic via tuning of the superexchange interactions by application of pressure. Thus far, however, there has been no experimental evidence for the predicted room-temperature multiferroicity. Here, we show by neutron diffraction that the multiferroic phase in CuO reaches 295 K with the application of 18.5 GPa pressure. We also develop a spin Hamiltonian based on density functional theory and employing superexchange theory for the magnetic interactions, which can reproduce the experimental results. The present Letter provides a stimulus to develop room-temperature multiferroic materials by alternative methods based on existing low temperature compounds, such as epitaxial strain, for tunable multifunctional devices and memory applications.

8.
Materials (Basel) ; 15(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36234350

RESUMEN

The annealing behavior of (1-x)BiMg0.5Ti0.5O3−xBiZn0.5Ti0.5O3 [(1-x)BMT−xBZT] perovskite solid solutions synthesized under high pressure was studied in situ via X-ray diffraction and piezoresponse force microscopy. The as prepared ceramics show a morphotropic phase boundary (MPB) between the non-polar orthorhombic and ferroelectric tetragonal states at 75 mol. % BZT. It is shown that annealing above 573 K results in irreversible changes in the phase diagram. Namely, for compositions with 0.2 < x < 0.6, the initial orthorhombic phase transforms into a ferroelectric rhombohedral phase. The new MPB between the rhombohedral and tetragonal phases lies at a lower BZT content of 60 mol. %. The phase diagram of the BMT−BZT annealed ceramics is formally analogous to that of the commercial piezoelectric material lead zirconate titanate. This makes the BMT−BZT system promising for the development of environmentally friendly piezoelectric ceramics.

9.
Inorg Chem ; 61(36): 14428-14435, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36044365

RESUMEN

A new member of A-site columnar-ordered A2A'A″B4O12 quadruple perovskites with the composition of Y2CuGaMn4O12 was prepared by a high-pressure, high-temperature method at 6 GPa and about 1500 K. Its crystal structure and cation distributions were studied by powder synchrotron X-ray and neutron diffraction. There is a triple A-site cation ordering with some degrees of anti-site disorder among sites occupied by 3d transition metals: [Y2]A[Cu0.8Mn0.2]A'[Ga0.8Mn0.2]A″[Mn3.6Cu0.2Ga0.2]BO12. It has the space group P42/nmc (no. 137) between 1.5 and 873 K with a = 7.33884 Å and c = 7.66251 Å at 297 K. Despite anti-site disorder, it exhibits a long-range ferrimagnetic order at TC = 115 K with the ordered moment of 2.19 µB at each B site and 0.89 µB at the A' or A″ site. Magnetic moments are aligned along the c axis; all moments are ordered ferromagnetically at the B sites, and the moments at the A' or A″ site are ordered in the opposite direction. Cu2+ doping drastically changes magnetic properties as "parent" Y2MnGaMn4O12 just shows spin-glass magnetic properties without long-range ordering. Anisotropic thermal expansion was observed in Y2CuGaMn4O12: the lattice parameter a almost linearly decreases from 1.5 K to TC and then monotonically increases up to 873 K (almost linearly from 300 K); the parameter c monotonically increases from 1.5 to 300 K and then decreases up to 600 K.

10.
Adv Mater ; 34(12): e2106728, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35064593

RESUMEN

The search of novel quasi-1D materials is one of the important aspects in the field of material science. Toroidal moment, the order parameter of ferrotoroidic order, can be generated by a head-to-tail configuration of magnetic moment. It has been theoretically proposed that 1D dimerized and antiferromagnetic (AFM)-like spin chain hosts ferrotoroidicity and has the toroidal moment composed of only two antiparallel spins. Here, the authors report a ferrotoroidic candidate of Ba6 Cr2 S10 with such a theoretical model of spin chain. The structure consists of unique dimerized face-sharing CrS6 octahedral chains along the c axis. An AFM-like ordering at ≈10 K breaks both space- and time-reversal symmetries and the magnetic point group of mm'2'allows three ferroic orders in Ba6 Cr2 S10 : (anti)ferromagnetic, ferroelectric, and ferrotoroidic orders. Their investigation reveals that Ba6 Cr2 S10 is a rare ferrotoroid ic candidate with quasi 1D spin chain, which can be considered as a starting point for the further exploration of the physics and applications of ferrotoroidicity.

11.
Dalton Trans ; 50(43): 15458-15472, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34632992

RESUMEN

Perovskite-structure AMnO3 manganites played an important role in the development of numerous physical concepts such as double exchange, small polarons, electron-phonon coupling, and Jahn-Teller effects, and they host a variety of important properties such as colossal magnetoresistance and spin-induced ferroelectric polarization (multiferroicity). A-site-ordered quadruple perovskite manganites AMn7O12 were discovered shortly after, but at that time their exploration was quite limited. Significant progress in their understanding has been reached in recent years after the wider use of high-pressure synthesis techniques needed to prepare such materials. Here we review this progress, and show that the AMn7O12 compounds host rich physics beyond the canonical AMnO3 materials.

12.
Science ; 369(6504): 680-684, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32764068

RESUMEN

Long-range ordering of magnetic dipoles in bulk materials gives rise to a broad range of magnetic structures, from simple collinear ferromagnets and antiferromagnets, to complex magnetic helicoidal textures stabilized by competing exchange interactions. In contrast, dipolar order in dielectric crystals is typically limited to parallel (ferroelectric) and antiparallel (antiferroelectric) collinear alignments of electric dipoles. Here, we report an observation of incommensurate helical ordering of electric dipoles by light hole doping of the quadruple perovskite BiMn7O12 In analogy with magnetism, the electric dipole helicoidal texture is stabilized by competing instabilities. Specifically, orbital ordering and lone electron pair stereochemical activity compete, giving rise to phase transitions from a nonchiral cubic structure to an incommensurate electric dipole and orbital helix via an intermediate density wave.

13.
Inorg Chem ; 59(14): 9798-9806, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32614169

RESUMEN

The structural and physical properties of the ß polymorph of iron tungstate Fe2WO6 have been investigated by synchrotron and neutron diffraction vs temperature, combined with magnetization and dielectric properties measurements. The monoclinic P21/a crystal structure of ß-Fe2WO6 has been determined and consists of an original network of zigzag chains of FeO6 and WO6 octahedra sharing trans and skew edges, connected through corners into a 3D structure. Magnetization measurements indicate an antiferromagnetic transition at TN = 264 K, which corresponds to a ↑↑↓↓ nearly collinear ordering of iron moments inside sequences of four edge-sharing FeO6 octahedra, as determined by neutron diffraction. A canting of the moments out of the ac plane is observed below 150 K, leading to a noncollinear antiferromagnetic structure, the P21/a' magnetic space group remaining unchanged. These results are discussed in comparison with the crystal and magnetic structures of γ-Fe2WO6 and with the magnetic couplings in other iron tungstates and trirutile Fe2TeO6.

14.
Inorg Chem ; 59(13): 9065-9076, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32515189

RESUMEN

The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A'A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A'[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A' site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A' and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8-13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er-Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA'3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase.

15.
Inorg Chem ; 59(13): 8727-8735, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32516538

RESUMEN

The temperature behavior of the crystal structure as well as dielectric and magnetic properties of the perovskite bismuth chromate ceramics with the 10 mol % Cr3+-to-Sc3+ substitution were studied and compared with those of the unmodified compound. Using a high-pressure synthesis, BiCrO3 and BiCr0.9Sc0.1O3 were obtained as metastable perovskite phases which are monoclinic C2/c with the √6ap × âˆš2ap × âˆš6ap superstructure (where ap is the primitive perovskite unit-cell parameter) under ambient conditions. At room temperature, the unit cell volume of BiCr0.9Sc0.1O3 is ∼1.3% larger than that of BiCrO3. Both perovskites undergo a reversible structural transition into a nonpolar GdFeO3-type phase (orthorhombic Pnma, √2ap × 2ap × âˆš2ap) in the temperature ranges of 410-420 K (BiCrO3) and 470-520 K (BiCr0.9Sc0.1O3) with a relative jump of the primitive perovskite unit cell volume of about -1.6 and -2.0%, respectively. Temperature dependences of the complex dielectric permittivity demonstrate anomalies in the phase transition ranges. The Pnma-to-C2/c crossover in BiCrO3 is accompanied by a decrease in the direct current (dc) conductivity, while in BiCr0.9Sc0.1O3 the conductivity increases. The onset of an antiferromagnetic order in BiCr0.9Sc0.1O3 is observed at the Néel temperature (TN) of about 85 K as compared with TN = 110 K in BiCrO3. In contrast to BiCrO3, which exhibits a spin reorientation at Tsr ∼ 72 K, no such a transition occurs in BiCr0.9Sc0.1O3.

16.
Nat Commun ; 11(1): 2348, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393775

RESUMEN

The quantum spin liquid is a highly entangled magnetic state characterized by the absence of static magnetism in its ground state. Instead, the spins fluctuate in a highly correlated way down to the lowest temperatures. Quantum spin liquids are very rare and are confined to a few specific cases where the interactions between the magnetic ions cannot be simultaneously satisfied (known as frustration). Lattices with magnetic ions in triangular or tetrahedral arrangements, which interact via isotropic antiferromagnetic interactions, can generate such a frustration. Three-dimensional isotropic spin liquids have mostly been sought in materials where the magnetic ions form pyrochlore or hyperkagome lattices. Here we present a three-dimensional lattice called the hyper-hyperkagome that enables spin liquid behaviour and manifests in the compound PbCuTe2O6. Using a combination of experiment and theory, we show that this system exhibits signs of being a quantum spin liquid with no detectable static magnetism together with the presence of diffuse continua in the magnetic spectrum suggestive of fractional spinon excitations.

17.
Inorg Chem ; 58(21): 14830-14841, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31638779

RESUMEN

Y2MnGa(Mn4-xGax)O12 solid solutions were synthesized at high pressure of ∼6 GPa and high temperature of ∼1570 K for the 0 ≤ x ≤ 3 compositional range. Synchrotron X-ray and neutron powder diffraction were used to study the crystal structures and cation distributions. These solutions adopt the parent structure of the A-site columnar-ordered quadruple perovskite family with space group P42/nmc (No. 137). They have lattice parameters of a = 7.36095 Å and c = 7.753 84 Å (x = 0), a = 7.361 68 Å and c = 7.716 16 Å (x = 1), a = 7.360 34 Å and c = 7.67142 Å (x = 2), and a = 7.363 93 Å and c = 7.616 85 Å (x = 3) at room temperature. The x = 0 sample has a cation distribution of [Y3+2]A[Mn3+]A'[Ga3+0.68Mn2+0.32]A″[Mn3.68Ga0.32]BO12 with a preferred localization of Ga3+ in the tetrahedral A″ site and with a small amount of Ga3+ in the octahedral B site. A complete triple A-site order, [Y3+2]A[Mn3+]A'[Ga3+]A″[Mn3+4-xGa3+x]BO12, is realized for x ≥ 1. All samples demonstrate spin-glass-like magnetic properties, and the absence of a long-range magnetic order at the ground state at 1.5 K was confirmed by neutron diffraction for the x = 1 sample. First-principles calculations indicated the spin-glass-like magnetic ordering is derived from the Ga substitution to the B sites and gave evidence that the ideal cation distribution could produce robust ferromagnetism in this family of perovskites.

18.
Chem Commun (Camb) ; 55(32): 4683-4686, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30938726

RESUMEN

A post-synthesis thermal treatment of metastable phases in the high-pressure stabilised perovskite BiFe1-yScyO3 system results in the irreversible formation of polymorphs which represent novel polar and antipolar structures with interesting magnetic properties. Such annealing-stimulated polymorphism is believed to be a general phenomenon which can be found in other systems.


Asunto(s)
Bismuto/química , Compuestos de Hierro/química , Óxidos/química , Escandio/química , Fenómenos Magnéticos , Transición de Fase , Presión
19.
Inorg Chem ; 58(5): 3492-3501, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30768249

RESUMEN

Sm2MnMn(Mn4- xTi x)O12 with 1 ≤ x ≤ 3 were prepared by a high-pressure, high-temperature method at 6 GPa and about 1570-1670 K. They belong to a family of A-site columnar-ordered quadruple perovskites A2A'A″B4O12, where A' is a site with a square-planar coordination and A″ is a site with a tetrahedral coordination. Their crystal structures were investigated using synchrotron X-ray and neutron powder diffraction. They crystallize in space group P42/ nmc (No. 137) with a = 7.41172 Å and c = 7.97131 Å for x = 1, a = 7.54945 Å and c = 7.76756 Å for x = 2, and a = 7.63949 Å and c = 7.70339 Å for x = 3 at 295 K. The determined charge and cation distributions are [Sm3+1.88Mn2+0.12]A[Mn3+]A'[Mn2+0.88Sm3+0.12]A″[Mn3+3Ti4+]BO12 for x = 1, [Sm3+1.91Mn2+0.09]A[Mn2+]A'[Mn2+0.91Sm3+0.09]A″[Mn3+2Ti4+2]BO12 for x = 2, and [Sm3+1.88Mn2+0.12]A[Mn2+0.88Sm3+0.12]A'[Mn2+]A″[Mn2+Ti4+3]BO12 for x = 3. Mn and Ti are distributed randomly in one B site in all compounds with the average oxidation state changing from +3.25 to +3.5 per one B atom, and such flexibility is realized because Mn at the A' site can change its oxidation state between +2 and +3. Sm and Mn are slightly disordered between the A and A″ sites for x = 1 and 2, and between the A and A' sites for x = 3. The x = 1 sample shows spin-canted antiferromagnetic properties with TN = 27 K, and the x = 2 sample, with TN = 62 K. On the other hand, the x = 3 sample is a ferrimagnet, confirmed by neutron diffraction, with TC = 40 K. The x = 3 sample shows relaxor-like dielectric properties below 220 K.

20.
Nat Commun ; 9(1): 2996, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065294

RESUMEN

The ABO3 perovskite oxides exhibit a wide range of interesting physical phenomena remaining in the focus of extensive scientific investigations and various industrial applications. In order to form a perovskite structure, the cations occupying the A and B positions in the lattice, as a rule, should be different. Nevertheless, the unique binary perovskite manganite Mn2O3 containing the same element in both A and B positions can be synthesized under high-pressure high-temperature conditions. Here, we show that this material exhibits magnetically driven ferroelectricity and a pronounced magnetoelectric effect at low temperatures. Neutron powder diffraction revealed two intricate antiferromagnetic structures below 100 K, driven by a strong interplay between spin, charge, and orbital degrees of freedom. The peculiar multiferroicity in the Mn2O3 perovskite is ascribed to a combined effect involving several mechanisms. Our work demonstrates the potential of binary perovskite oxides for creating materials with highly promising electric and magnetic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...