Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Commun ; 4(6): 100660, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37455428

RESUMEN

High-temperature (HT) stress causes male sterility in crops, thus decreasing yields. To explore the possible contribution of histone modifications to male fertility under HT conditions, we defined the histone methylation landscape for the marks histone H3 lysine 27 trimethylation (H3K27me3) and histone H3 lysine 4 trimethylation (H3K4me3) by chromatin immunoprecipitation sequencing (ChIP-seq) in two differing upland cotton (Gossypium hirsutum) varieties. We observed a global disruption in H3K4me3 and H3K27me3 modifications, especially H3K27me3, in cotton anthers subjected to HT. HT affected the bivalent H3K4me3-H3K27me3 modification more than either monovalent modification. We determined that removal of H3K27me3 at the promoters of jasmonate-related genes increased their expression, maintaining male fertility under HT in the HT-tolerant variety at the anther dehiscence stage. Modulating jasmonate homeostasis or signaling resulted in an anther indehiscence phenotype under HT. Chemical suppression of H3K27me3 deposition increased jasmonic acid contents and maintained male fertility under HT. In summary, our study provides new insights into the regulation of male fertility by histone modifications under HT and suggests a potential strategy for improving cotton HT tolerance.


Asunto(s)
Gossypium , Histonas , Histonas/genética , Gossypium/genética , Gossypium/metabolismo , Lisina/metabolismo , Temperatura , Fertilidad/genética
2.
Tree Physiol ; 43(7): 1265-1283, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-36905330

RESUMEN

Waterlogging is a major abiotic stress that plants encounter as a result of climate change impacts. Peach is very sensitive to hypoxia during waterlogging, which causes poor tree vigor and huge economic losses. The molecular mechanism underlying the peach response to waterlogging and reoxygenation remains unclear. Here, the physiological and molecular responses of 3-week-old peach seedlings under waterlogged and recovery conditions were comprehensively analyzed. As a result, waterlogging significantly reduced plant height and biomass with inhibition of root growth when compared with control and reoxygenation. Similar results were observed for photosynthetic activities and gaseous exchange parameters. Waterlogging increased lipid peroxidation, hydrogen peroxide, proline, glutamic acid and glutathione contents, while superoxide dismutase, peroxidases and catalase activities were decreased. The glucose and fructose contents were accumulated, contrary to sucrose which was reduced remarkably throughout the stress periods. The level of endogenous indole acetic acid (IAA) was increased in waterlogging but decreased after reoxygenation. However, the change trends of jasmonic acid (JA), cytokinins and abscisic acid (ABA) levels were opposite to IAA. In transcriptomic analysis, there were 13,343 differentially expressed genes (DEGs) with higher and 16,112 genes with lower expression. These DEGs were greatly enriched in carbohydrate metabolism, anaerobic fermentation, glutathione metabolism and IAA hormone biosynthesis under waterlogging, while they were significantly enriched in photosynthesis, reactive oxygen species scavenging, ABA and JA hormones biosynthesis in reoxygenation. Moreover, several genes related to stress response, carbohydrate metabolism and hormones biosynthesis were significantly changed in waterlogging and reoxygenation, which indicated unbalanced amino acid, carbon and fatty acid pools in peach roots. Taken together, these results suggest that glutathione, primary sugars and hormone biosynthesis and signaling might play key roles in plant response to waterlogging. Our work provides a comprehensive understanding of gene regulatory networks and metabolites in waterlogging stress and its recuperation, which will facilitate peach waterlogging control.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plantas/metabolismo , Glutatión , Hormonas
3.
Environ Sci Pollut Res Int ; 30(3): 5296-5311, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36402881

RESUMEN

Industrialization plays a crucial role in the economic development of a country; however, the effluents produced as a byproduct generally contain toxic substances which are detrimental to living organisms. In this regard, it is essential to treat these toxic effluents before exposing them to the natural environment by selecting the most appropriate method accordingly. Several techniques are used to remediate industrial effluents including physical, chemical, and biological. Although some physical and chemical remediation technologies are of substantially important in remediation of industrial effluents, however, these technologies are either expensive to be applied by developing countries or not suitable for remediation of all kinds of effluents. In contrast, biological remediation is cost effective, nature friendly, and easy to use for almost all kinds of effluents. Among biological remediation strategies, phytoremediation is considered to be the most suitable method for remediation of industrial effluents; however, the phytoremediation process is slow, takes time in application and some effluents even affect plants growth and development. Alternately, plant microbe interactions could be a winning partner to remediate industrial effluents more efficiently. Among the microbes, plant growth promoting bacteria (PGPB) not only improve plant growth but also help in degradation, sequestration, volatilization, solubilization, mobilization, and bioleaching of industrial effluents which subsequently improve the phytoremediation process. The current study discusses the role of PGPB in enhancing the phytoremediation processes of industrial effluents.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/metabolismo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Bacterias/metabolismo , Desarrollo de la Planta
4.
Plant Biotechnol J ; 21(4): 680-697, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36221230

RESUMEN

Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.


Asunto(s)
Calor , Infertilidad Masculina , Masculino , Humanos , Temperatura , Productos Agrícolas/genética
6.
Mol Biol Rep ; 49(12): 11611-11622, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36161578

RESUMEN

BACKGROUND: Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA. METHODS AND RESULTS: The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA. CONCLUSION: We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.


Asunto(s)
Colletotrichum , Policétidos , Colletotrichum/genética , Secuencia de Bases , Familia de Multigenes , Policétidos/metabolismo , Sirolimus
7.
Plant Growth Regul ; 97(3): 439-454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35382096

RESUMEN

"Triterpenoids" can be considered natural products derived from the cyclization of squalene, yielding 3-deoxytriterpenes (hydrocarbons) or 3-hydroxytriterpenes. Triterpenoids are metabolites of these two classes of triterpenes, produced by the functionalization of their carbon skeleton. They can be categorized into different groups based on their structural formula/design. Triterpenoids are an important group of compounds that are widely used in the fields of pharmacology, food, and industrial biotechnology. However, inadequate synthetic methods and insufficient knowledge of the biosynthesis of triterpenoids, such as their structure, enzymatic activity, and the methods used to produce pure and active triterpenoids, are key problems that limit the production of these active metabolites. Here, we summarize the derivatives, pharmaceutical properties, and biosynthetic pathways of triterpenoids and review the enzymes involved in their biosynthetic pathway. Furthermore, we concluded the screening methods, identified the genes involved in the pathways, and highlighted the appropriate strategies used to enhance their biosynthetic production to facilitate the commercial process of triterpenoids through the synthetic biology method.

8.
Genes (Basel) ; 13(3)2022 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-35327995

RESUMEN

Tetraploid Robinia pseudoacacia L. is a difficult-to-root species, and is vegetatively propagated through stem cuttings. Limited information is available regarding the adventitious root (AR) formation of dark-pretreated micro-shoot cuttings. Moreover, the role of specific miRNAs and their targeted genes during dark-pretreated AR formation under in vitro conditions has never been revealed. The dark pretreatment has successfully promoted and stimulated adventitious rooting signaling-related genes in tissue-cultured stem cuttings with the application of auxin (0.2 mg L-1 IBA). Histological analysis was performed for AR formation at 0, 12, 36, 48, and 72 h after excision (HAE) of the cuttings. The first histological events were observed at 36 HAE in the dark-pretreated cuttings; however, no cellular activities were observed in the control cuttings. In addition, the present study aimed to uncover the role of differentially expressed (DE) microRNAs (miRNAs) and their targeted genes during adventitious root formation using the lower portion (1-1.5 cm) of tetraploid R. pseudoacacia L. micro-shoot cuttings. The samples were analyzed using Illumina high-throughput sequencing technology for the identification of miRNAs at the mentioned time points. Seven DE miRNA libraries were constructed and sequenced. The DE number of 81, 162, 153, 154, 41, 9, and 77 miRNAs were upregulated, whereas 67, 98, 84, 116, 19, 16, and 93 miRNAs were downregulated in the following comparisons of the libraries: 0-vs-12, 0-vs-36, 0-vs-48, 0-vs-72, 12-vs-36, 36-vs-48, and 48-vs-72, respectively. Furthermore, we depicted an association between ten miRNAs (novel-m0778-3p, miR6135e.2-5p, miR477-3p, miR4416c-5p, miR946d, miR398b, miR389a-3p, novel m0068-5p, novel-m0650-3p, and novel-m0560-3p) and important target genes (auxin response factor-3, gretchen hagen-9, scarecrow-like-1, squamosa promoter-binding protein-like-12, small auxin upregulated RNA-70, binding protein-9, vacuolar invertase-1, starch synthase-3, sucrose synthase-3, probable starch synthase-3, cell wall invertase-4, and trehalose phosphatase synthase-5), all of which play a role in plant hormone signaling and starch and sucrose metabolism pathways. The quantitative polymerase chain reaction (qRT-PCR) was used to validate the relative expression of these miRNAs and their targeted genes. These results provide novel insights and a foundation for further studies to elucidate the molecular factors and processes controlling AR formation in woody plants.


Asunto(s)
MicroARNs , Robinia , Almidón Sintasa , Perfilación de la Expresión Génica , Ácidos Indolacéticos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Robinia/genética , Robinia/metabolismo , Almidón Sintasa/genética , Tetraploidía , beta-Fructofuranosidasa/genética
9.
Plant Biotechnol J ; 20(6): 1054-1068, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35114063

RESUMEN

The pollen wall exine provides a protective layer for the male gametophyte and is largely composed of sporopollenin, which comprises fatty acid derivatives and phenolics. However, the biochemical nature of the external exine is poorly understood. Here, we show that the male sterile line 1355A of cotton mutated in NO SPINE POLLEN (GhNSP) leads to defective exine formation. The GhNSP locus was identified through map-based cloning and confirmed by genetic analysis (co-segregation test and allele prediction using the CRISPR/Cas9 system). In situ hybridization showed that GhNSP is highly expressed in tapetum. GhNSP encodes a polygalacturonase protein homologous to AtQRT3, which suggests a function for polygalacturonase in pollen exine formation. These results indicate that GhNSP is functionally different from AtQRT3, the latter has the function of microspore separation. Biochemical analysis showed that the percentage of de-esterified pectin was significantly increased in the 1355A anthers at developmental stage 8. Furthermore, immunofluorescence studies using antibodies to the de-esterified and esterified homogalacturonan (JIM5 and JIM7) showed that the Ghnsp mutant exhibits abundant of de-esterified homogalacturonan in the tapetum and exine, coupled with defective exine formation. The characterization of GhNSP provides new understanding of the role of polygalacturonase and de-esterified homogalacturonan in pollen exine formation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Poligalacturonasa , Fertilidad , Pectinas/metabolismo , Polen/genética , Polen/metabolismo , Poligalacturonasa/genética , Poligalacturonasa/metabolismo
10.
3 Biotech ; 11(11): 469, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34745820

RESUMEN

Dry tubers of Pinellia ternata (Thunb.) Breit are used in traditional Chinese medicine. Commonly known as "banxia" in China, the tubers contain valuable compounds, including alkaloids and polysaccharides that are widely used in pharmaceuticals. The quantity and quality of these important compounds are affected by whether P. ternata is grown as a sole crop or as an intercrop, and P. ternata cultivation has become challenging in recent years. By intercropping P. ternata, its maximum yield, as well as large numbers of chemical components, can be realized. Here, a large data set derived from next-generation sequencing was used to compare changes in the bacterial communities in rhizosphere soils of P. ternata and maize grown as sole crops and as intercrops. The overall microbial population in the rhizosphere of intercropped P. ternata was significantly larger than that of sole-cropped P. ternata, whereas the numbers of distinct microbial genera, ranging from 552 to 559 among treatments, were not significantly different between the two rhizospheres. The relative abundances of the genera differed. Specifically, the numbers of Acidobacteria and Anaerolineaceae species were significantly greater, and those of Bacillus were significantly lower, in the intercropped P. ternata rhizosphere than in the sole-cropped rhizosphere. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03011-3.

11.
Ecotoxicol Environ Saf ; 225: 112738, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34481352

RESUMEN

Arsenic is a significant food safety and environmental concern due to its mutagenic and carcinogenic effect on living organism. Soybean (Glycine max [L.] Merrill) is a global staple crop grown intensively in arsenic-contaminated regions of the world (e.g., Southern Province of China). Therefore, the objective of this study was to investigate whether Se-NPs and/or ZnO-NPs could be used as an eco-friendly and efficient amendment to reduce arsenic uptake and toxicity in soybean. Ten-days-old seedling, grown in vermiculite, were transferred to hydroponic media and further grown till V2 growth stage appeared. AsV (25 µM Na2HAsO4) stressed plants were treated with ZnONP (25 µM ZnO) and SeNP (25 µM Se) separately and in combination, which were grown for another 10 d. The result demonstrated that arsenic-treated soybean plants displayed a reduction in photosynthetic efficiency, increased proline and glycine betaine accumulation in tissues, and altered antioxidant activity compared to an untreated control. The application of zinc oxide and selenium nanoparticles, both independently and in tandem, reduced arsenic stress in root and shoot tissues and rescued plant health. This was reflected through increased levels of reduced glutathione content, ascorbic acid, and various photosynthesis- and antioxidant-relevant enzymes. In addition, nanoparticle-treated soybean plants displayed higher expression of defense- and detoxification-related genes compared to controls. Cellular toxicants (i.e., oxidized glutathione, reactive oxygen species, and malondialdehyde) were reduced upon nanoparticle treatment. These data collectively suggest that selenium and zinc oxide nanoparticles may be a solution to ameliorate arsenic toxicity in agricultural soils and crop plants.


Asunto(s)
Nanopartículas , Óxido de Zinc , Antioxidantes , Nanopartículas/toxicidad , Fotosíntesis , Raíces de Plantas , Plantones , Glycine max , Óxido de Zinc/toxicidad
12.
Gene ; 796-797: 145797, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34175389

RESUMEN

Verticillium wilt is a major limiting factor for sustainable production of cotton but the mechanism of controlling this disease is still poorly understood. Lipoxygenase (LOX)-derived oxylipins have been implicated in defense responses against diverse pathogens; however there is limited information about the functional characterization of LOXs in response to Verticillium dahliae infection. In this study, we report the characterization of a cotton LOX gene, GhLOX2, which phylogenetically clustered into 13-LOX subfamily and is closely related to Arabidopsis LOX2 gene. GhLOX2 was predominantly expressed in leaves and strongly induced following V. dahliae inoculation and treatment of methyl jasmonate (MeJA). RNAi-mediated knock-down of GhLOX2 enhanced cotton susceptibility to V. dahliae and was coupled with suppression of jasmonic acid (JA)-related genes both after inoculation with the cotton defoliating strain V991 or MeJA treatment. Interestingly, lignin contents, transcripts of lignin synthesis genes and H2O2 contents were also decreased in GhLOX2-silenced plants. This study suggests that GhLOX2 is involved in defense responses against infection of V. dahliae in cotton and supports that JA is one of the major defense hormones against this pathogen.


Asunto(s)
Ascomicetos , Ciclopentanos/metabolismo , Resistencia a la Enfermedad/genética , Gossypium/genética , Gossypium/microbiología , Lipooxigenasa/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Técnicas de Silenciamiento del Gen , Gossypium/enzimología , Lignina/biosíntesis , Lignina/genética , Lipooxigenasa/química , Lipooxigenasa/clasificación , Redes y Vías Metabólicas , Filogenia , Interferencia de ARN
13.
Ecotoxicology ; 30(6): 1227-1241, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34117552

RESUMEN

In this study, the detoxification enzyme activity and the transcriptional profile changes in the second instar through RNA-sequencing technology due to emamectin benzoate (EB) were assessed. The cytochrome P450 monooxygenases (P450) enzyme activity was not altered by EB due to the change in concentration and exposure time in all treatments. The glutathione S-transferase (GST) enzyme was not considerably varying in all treatments, while exposure time significantly changed the enzyme activity. Results showed that the esterase (Ests) activity was elevated with the increasing concentrations and exposure time. Two libraries were generated, containing 107,767,542 and 108,142,289 clean reads for the samples treated with LC30 of EB and control. These reads were grouped into 218,070 transcripts and 38,097 unigenes. A total of 2257 differentially expressed genes (DEGs) were identified from these unigenes, of which 599 up-regulated and 1658 were down-regulated. The majority of these DEGs related to pesticides resistance were identified in numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, e.g., steroid hormone biosynthesis, glutathione metabolism, drug metabolism-other enzymes, chemical carcinogenesis, pathways of cancer, metabolism of xenobiotics by cytochrome P450, drug metabolism of cytochrome P450, linoleic acid metabolism, retinol metabolism, and insect hormone biosynthesis. These pathways also shared the same genes as cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), Esterase (Ests), UDP-glucosyltransferases (UGTs), and ATP-binding cassettes (ABCs). A heatmap analysis also showed that regulation of genes in a pathway causes a series of gene expression regulation in subsequent pathways. Our quantitative reverse transcription-PCR (qRT-PCR) results were consistent with the DEG's data of transcriptome analysis. The comprehensive transcriptome sequence resource attained through this study evidence that the EB induces significant modification in enzyme activity and transcriptome profile of Paederus fuscipes, which may enable more significant molecular underpinnings behind the insecticide-resistance mechanism for further investigations.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Perfilación de la Expresión Génica , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Transcriptoma
14.
New Phytol ; 231(1): 165-181, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33665819

RESUMEN

Global warming has reduced the productivity of many field-grown crops, as the effects of high temperatures can lead to male sterility in such plants. Genetic regulation of the high temperature (HT) response in the major crop cotton is poorly understood. We determined the functionality and transcriptomes of the anthers of 218 cotton accessions grown under HT stress. By analyzing transcriptome divergence and implementing a genome-wide association study (GWAS), we identified three thermal tolerance associated loci which contained 75 protein coding genes and 27 long noncoding RNAs, and provided expression quantitative trait loci (eQTLs) for 13 132 transcripts. A transcriptome-wide association study (TWAS) confirmed six causal elements for the HT response (three genes overlapped with the GWAS results) which are involved in protein kinase activity. The most susceptible gene, GhHRK1, was confirmed to be a previously uncharacterized negative regulator of the HT response in both cotton and Arabidopsis. These functional variants provide a new understanding of the genetic basis for HT tolerance in male reproductive organs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Infertilidad Masculina , Gossypium/genética , Humanos , Masculino , Sitios de Carácter Cuantitativo/genética , Temperatura , Transcriptoma/genética
15.
J Exp Bot ; 71(19): 6128-6141, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640017

RESUMEN

High temperature stress is an inevitable environmental factor in certain geographical regions. To study the effect of day and night high temperature stress on male reproduction, the heat-sensitive cotton line H05 was subjected to high temperature stress. High day/normal night (HN) and normal day/high night (NH) temperature treatments were compared with normal day/normal night (NN) temperature as a control. At the anther dehiscence stage, significant differences were observed, with a reduction in flower size and filament length, and sterility in pollen, seen in NH more than in HN. A total of 36 806 differentially expressed genes were screened, which were mainly associated with fatty acid and jasmonic acid (JA) metabolic pathways. Fatty acid and JA contents were reduced more in NH than HN. Under NH, ACYL-COA OXIDASE 2 (ACO2), a JA biosynthesis gene, was down-regulated. Interestingly, aco2 CRISPR-Cas9 mutants showed male sterility under the NN condition. The exogenous application of methyl jasmonate to early-stage buds of mutants rescued the sterile pollen and indehiscent anther phenotypes at the late stage. These data show that high temperature at night may affect fatty acid and JA metabolism in anthers by suppressing GhACO2 and generate male sterility more strongly than high day temperature.


Asunto(s)
Ácidos Grasos , Infertilidad Masculina , Ciclopentanos , Flores , Regulación de la Expresión Génica de las Plantas , Humanos , Masculino , Oxilipinas , Temperatura
16.
Mol Biol Rep ; 47(3): 1573-1581, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31933260

RESUMEN

Transcriptional factors are the major regulators of plant signaling pathways in response to environmental stresses i.e., drought, salinity and cold. Hereby, the GhMYB108-like was characterized to determine whether it regulate these stresses. The GhMYB108-like cDNA consisted of 1107 base pairs (bp) with 807 open reading frame encoded a protein of 268 amino acids. Its isoelectric point and molecular weight are 5.51 and 30.3 kDa respectively. Phylogenetic analysis and online databases revealed that GhMYB108-like proteins are closely related with the Arabidopsis thaliana MYB2. Important cis-elements were detected in the promotor region of GhMYB108-like responding to stresses and phytohormones. The 3D structure of GhMYB108-like protein has been predicted. In addition, various physico-chemical properties of GhMYB108-like have been determined. Subcellular localization confirmed that GhMYB108-like are nuclear localized protein. Quantitative expression analysis showed that polyethylene glycol and salt treatments significantly induced the expression of GhMYB108-like. Overall, our findings suggest that GhMYB108-like is an important gene that would plays important regulatory role in response to drought and salt stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Proteínas de Plantas/genética , Proteínas Proto-Oncogénicas c-myb/genética , Elementos Reguladores de la Transcripción/genética , Estrés Fisiológico , Secuencia de Aminoácidos , Secuencia de Bases , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Gossypium/metabolismo , Filogenia , Fitocromo/farmacología , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Proto-Oncogénicas c-myb/clasificación , Proteínas Proto-Oncogénicas c-myb/metabolismo , Salinidad , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología
17.
Appl Microbiol Biotechnol ; 103(18): 7385-7397, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31375881

RESUMEN

Climate change is a crucial issue among the serious emerging problems which got a global attention in the last few decades. With the climate change, worldwide crop production has been seriously affected by drought stress. In this regard, various technologies including traditional breeding and genetic engineering are used to cope with drought stress. However, the interactions between plants and endophytic bacteria emerged as an interesting era of knowledge that can be used for novel agriculture practices. Endophytic bacteria which survive within plant tissues are among the most appropriate technologies improving plant growth and yield under drought conditions. These endophytic bacteria live within plant tissues and release various phytochemicals that assist plant to withstand in harsh environmental conditions, i.e., drought stress. Their plant growth-promoting characteristics include nitrogen fixation, phosphate solubilization, mineral uptake, and the production of siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and various phytohormones. These plant growth promoting characteristics of endophytic bacteria improve root length and density, which lead to the enhance drought tolerance. In addition, plant-endophytic bacteria assist plant to withstand against drought stress by producing drought-tolerant substances, for instance, abscisic acid, indole-3-acetic acid, ACC deaminase, and various volatile compounds. Indirectly, endophytic bacteria also improve osmotic adjustment, relative water content, and antioxidant activity of inoculated plants. Altogether, these bacterial-mediated drought tolerance and plant growth-promoting processes continue even under severe drought conditions which lead to enhanced plant growth promotion and yield. The present review highlights a natural and environment-friendly strategy in the form of drought-tolerant and plant growth-promoting endophytic bacteria to improve drought tolerance in plants.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Sequías , Endófitos/fisiología , Plantas/microbiología , Estrés Fisiológico , Agricultura , Interacciones Microbiota-Huesped , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/microbiología , Rizosfera , Sideróforos
18.
Microb Ecol ; 77(2): 429-439, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30196314

RESUMEN

Climate change contributes to drought stress and subsequently affects crop growth, development, and yield. The microbial community, such as fungi and bacteria in the rhizosphere, is of special importance to plant productivity. In this study, soil collected from a cotton research field was used to grow cotton plants (Gossypium hirsutum cv. Jin668) under controlled environment conditions. Drought stress was applied at flowering stage, while control plants were regularly watered. At the same time, the soil without plants was also subjected to drought, while control pots were regularly watered. The soil was collected in sterilized tubes and microbial DNA was isolated and high-throughput sequencing of 16S rRNA genes was carried out. The alpha diversity of bacteria community significantly increased in the soil with cotton plants compared to the soil without cotton plants. Taxonomic analysis revealed that the bacterial community structure of the cotton rhizosphere predominantly consisted of the phyla Proteobacteria (31.7%), Actinobacteria (29.6%), Gemmatimonadetes (9.8%), Chloroflexi (9%), Cyanobacteria (5.6%), and Acidobacteria. In the drought-treated rhizosphere, Chloroflexi and Gemmatimonadetes were the dominant phyla. This study reveals that the cotton rhizosphere has a rich pool of bacterial communities even under drought stress, and which may improve drought tolerance in plants. These data will underpin future improvement of drought tolerance of cotton via the soil microbial community.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Gossypium/microbiología , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Sequías , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Gossypium/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Rizosfera , Suelo/química , Microbiología del Suelo , Agua/análisis , Agua/metabolismo
19.
Environ Sci Pollut Res Int ; 25(33): 33103-33118, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30284160

RESUMEN

Drought stress is a severe environmental constraint among the emerging problems. Plants are highly vulnerable to drought stress and a severe decrease in yield was recorded in the last few decades. So, it is highly desirable to understand the mechanism of drought tolerance in plants and consequently enhance the tolerance against drought stress. Phytohormones are known to play vital roles in regulating various phenomenons in plants to acclimatize to varying drought environment. Abscisic acid (ABA) is considered the main hormone which intensifies drought tolerance in plants through various morpho-physiological and molecular processes including stomata regulation, root development, and initiation of ABA-dependent pathway. In addition, jasmonic acid (JA), salicylic acid (SA) ethylene (ET), auxins (IAA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs) are also very important phytohormones to congregate the challenges of drought stress. However, these hormones are usually cross talk with each other to increase the survival of plants in drought conditions. On the other hand, the transgenic approach is currently the most accepted technique to engineer the genes responsible for the synthesis of phytohormones in drought stress response. Our present review highlights the regulatory circuits of phytohormones in drought tolerance mechanism.


Asunto(s)
Sequías , Desarrollo de la Planta/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética , Estrés Fisiológico/genética
20.
Plant Physiol Biochem ; 125: 193-204, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29462745

RESUMEN

Cotton, a natural fiber producing crop of huge importance for textile industry, has been reckoned as the backbone in the economy of many developing countries. Verticillium wilt caused by Verticillium dahliae reflected as the most devastating disease of cotton crop in several parts of the world. Average losses due to attack of this disease are tremendous every year. There is urgent need to develop strategies for effective control of this disease. In the last decade, progress has been made to understand the interaction between cotton-V. dahliae and several growth and pathogenicity related genes were identified. Still, most of the molecular components and mechanisms of cotton defense against Verticillium wilt are poorly understood. However, from existing knowledge, it is perceived that cotton defense mechanism primarily depends on the pre-formed defense structures including thick cuticle, synthesis of phenolic compounds and delaying or hindering the expansion of the invader through advanced measures such as reinforcement of cell wall structure, accumulation of reactive oxygen species (ROS), release of phytoalexins, the hypersensitive response and the development of broad spectrum resistance named as, systemic acquired resistance (SAR). Investigation of these defense tactics provide valuable information about the improvement of cotton breeding strategies for the development of durable, cost effective, and broad spectrum resistant varieties. Consequently, this management approach will help to reduce the use of fungicides and also minimize other environmental hazards. In the present paper, we summarized the V. dahliae virulence mechanism and comprehensively discussed the cotton molecular mechanisms of defense such as physiological, biochemical responses with the addition of signaling pathways that are implicated towards attaining resistance against Verticillium wilt.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Gossypium , Enfermedades de las Plantas/microbiología , Transducción de Señal , Gossypium/metabolismo , Gossypium/microbiología , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/metabolismo , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...