Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611748

RESUMEN

Stem cell-derived exosomes (SC-Exos) are used as a source of regenerative medicine, but certain limitations hinder their uses. The effect of hydrolyzed collagen oligopeptides (HCOPs), a functional ingredient of SC-Exos is not widely known to the general public. We herein evaluated the combined anti-aging effects of HCOPs and exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-Exos) using a senescence model established on human skin fibroblasts (HSFs). This study discovered that cells treated with HucMSC-Exos + HCOPs enhanced their proliferative and migratory capabilities; reduced both reactive oxygen species production and senescence-associated ß-galactosidase activity; augmented type I and type III collagen expression; attenuated the expression of matrix-degrading metalloproteinases (MMP-1, MMP-3, and MMP-9), interleukin 1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α); and decreased the expression of p16, p21, and p53 as compared with the cells treated with HucMSC-Exos or HCOPs alone. These results suggest a possible strategy for enhancing the skin anti-aging ability of HucMSC-Exos with HCOPs.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Humanos , Fibroblastos , Envejecimiento , Colágeno Tipo III , Cordón Umbilical
2.
Comput Intell Neurosci ; 2023: 9266889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959840

RESUMEN

To diagnose an illness in healthcare, doctors typically conduct physical exams and review the patient's medical history, followed by diagnostic tests and procedures to determine the underlying cause of symptoms. Chronic kidney disease (CKD) is currently the leading cause of death, with a rapidly increasing number of patients, resulting in 1.7 million deaths annually. While various diagnostic methods are available, this study utilizes machine learning due to its high accuracy. In this study, we have used the hybrid technique to build our proposed model. In our proposed model, we have used the Pearson correlation for feature selection. In the first step, the best models were selected on the basis of critical literature analysis. In the second step, the combination of these models is used in our proposed hybrid model. Gaussian Naïve Bayes, gradient boosting, and decision tree classifier are used as a base classifier, and the random forest classifier is used as a meta-classifier in the proposed hybrid model. The objective of this study is to evaluate the best machine learning classification techniques and identify the best-used machine learning classifier in terms of accuracy. This provides a solution for overfitting and achieves the highest accuracy. It also highlights some of the challenges that affect the result of better performance. In this study, we critically review the existing available machine learning classification techniques. We evaluate in terms of accuracy, and a comprehensive analytical evaluation of the related work is presented with a tabular system. In implementation, we have used the top four models and built a hybrid model using UCI chronic kidney disease dataset for prediction. Gradient boosting achieves around 99% accuracy, random forest achieves 98%, decision tree classifier achieves 96% accuracy, and our proposed hybrid model performs best getting 100% accuracy on the same dataset. Some of the main machine learning algorithms used to predict the occurrence of CKD are Naïve Bayes, decision tree, K-nearest neighbor, random forest, support vector machine, LDA, GB, and neural network. In this study, we apply GB (gradient boosting), Gaussian Naïve Bayes, and decision tree along with random forest on the same set of features and compare the accuracy score.


Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Teorema de Bayes , Redes Neurales de la Computación , Bosques Aleatorios , Máquina de Vectores de Soporte
3.
BMC Vet Res ; 19(1): 26, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717886

RESUMEN

BACKGROUND: Porcine circovirus type 2 (PCV2) is one of the major pathogens commonly found in pigs, which causes immunosuppression and apoptosis. Vaccination and a single drug cannot totally prevent and treat PCV2 infection. Our previous in vitro study reported that the synergistic anti-PCV2 effect of Matrine and Osthole was better than that of Matrine or Osthole alone, This study was aimed to evaluate the synergistic anti-PCV2 effect as well as the underline molecular mechanism of Matrine and Osthole in Kunming (KM) mice model infected with PCV2. KM mice were randomly divided into 8 groups namely control group, PCV2 infected, Matrine combined with Osthole high dose treatment (40 mg/kg + 12 mg/kg), medium dose treatment (20 mg/kg + 6 mg/kg), low dose treatment (10 mg/kg + 3 mg/kg), Matrine treatment (40 mg/kg), Osthole treatment (12 mg/kg) and Ribavirin positive control (40 mg/kg) groups. PCV2 was intraperitoneally (i.p.) injected in all mice except the control group. 5 days of post-infection (dpi), mice in different treatment groups were injected i.p. with various doses of Matrine, Osthole and Ribavirin once daily for the next 5 consecutive days. RESULTS: The synergistic inhibitory effect of Matrine and Osthole on PCV2 replication in mouse liver was significantly heigher than that of Matrine and Osthole alone. The expression of GRP78, p-PERK, p-eIF2α, ATF4, CHOP, cleaved caspase-3 and Bax proteins were significantly reduced, while that of Bcl-2 was significantly increased in Matrine combined with Osthole groups, which alleviated the pathological changes caused by PCV2, such as interstitial pneumonia, loss of spleen lymphocytes, infiltration of macrophages and eosinophils. CONCLUSIONS: The synergistic anti-apoptotic effect of Matrine and Osthole was better than their alone effect, Both Matrine and Osthole had directly inhibited the expression of PCV2 Cap and the apoptosis of spleen cells induced by PCV2 Cap through the PERK pathway activated by endoplasmic reticulum (ER) GRP78. These results provided a new insight to control PCV2 infection and provide good component prescription candidate for the development of novel anti-PCV2 drugs.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Matrinas , Animales , Ratones , Apoptosis , Infecciones por Circoviridae/tratamiento farmacológico , Infecciones por Circoviridae/patología , Chaperón BiP del Retículo Endoplásmico , Matrinas/farmacología , Ribavirina/farmacología , Bazo
4.
BMC Vet Res ; 18(1): 453, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572890

RESUMEN

BACKGROUND: Zedoary turmeric oil extracted from the roots of curcuma (Curcuma aeruginosa Roxb.) is used for the treatment of myocarditis in China. EMCV infection causes abortion in pregnant sows and myocarditis in piglets. Our previous studies demonstrated that curcumol significantly increased the expression of IFN-ß in EMCV infected HEK-293T cells. The present results showed that curcumol inhibits EMCV replication by interfering the host cell cholesterol homeostasis and reducing ROs production through activation of the JAK/STAT signaling pathway. METHOD: This study was designed to explore whether curcumol can inhibit the replication of encephalomyocarditis viruses (EMCV) in cell culture. The expression level of JAK1, IRF9, STAT2, P-STAT2, CH25H, PI4KA and OSBP in EMCV-infected HEK-293T cells treated with curcumol, ribavirin or hydroxypropyl-ß-CD (HPCD) were determined by Western blotting (WB). The cholesterol level in EMCV infected HEK-293T cells treated with curcumol and HPCD were detected using Amplex™ Red Cholesterol Assay Kit. The antiviral effects of curcumol and HPCD on EMCV were also quantitatively detected by real-time fluorescence quantitative PCR (q-PCR). The amount and morphology of ROs were observed by transmission electron microscopy (TEM). RESULTS: The results demonstrated that curcumol significantly (P < 0.05) increased the expression of JAK1, IRF9, P-STAT2 and CH25H proteins, while that of STAT2, PI4KA and OSBP were remained unchanged. Compared with virus group (0.134 µg.µg-1 proteins), the total cholesterol level was significantly (P < 0.05) reduced by curcumol (0.108 µg.µg-1 proteins) and HPCD (0.089 µg.µg-1 proteins). Compared with virus group (88237 copies), curcumol (41802 copies) and HPCD (53 copies) significantly (P < 0.05) reduced EMCV load. Curcumol significantly reduced the production of ROs in EMCV-infected HEK-293T cells and activated CH25H through the JAK/STAT signaling pathway. CONCLUSION: Curcumol inhibited EMCV replication by affecting the cholesterol homeostasis and the production of ROs in HEK-293T cell.


Asunto(s)
Miocarditis , Sesquiterpenos , Enfermedades de los Porcinos , Animales , Porcinos , Femenino , Embarazo , Miocarditis/veterinaria , Aborto Veterinario , Sesquiterpenos/farmacología , Virus de la Encefalomiocarditis , Replicación Viral
5.
Front Plant Sci ; 13: 982844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275557

RESUMEN

Crop wild resources are excellent sources of new genetic variation for resilience against climate extremes. However, detailed characterization of the desirable phenotypes is essential before using these crop wild resources in breeding programs. This current study was, therefore, conducted to investigate the water stress responses of eight wild Elymus species and two wheat cultivars. The experiment was carried out under varying levels of osmotic stress induced by polyethylene glycol and progressive water stress through different field capacities. Water stress significantly reduced both physiological and biochemical traits compared to control, ranging from 7.1% (protein content) to 34.5% (chlorophyll) under moderate stress and 9.1-45.8% under severe stress. The anatomical features were also affected under progressive water stress, including a reduction in xylem vessel diameter (7.92 and 16.50%), phloem length (4.36 and 7.18%), vascular bundle length (3.09 and 6.04%), and ground tissue thickness (2.36 and 5.52%), respectively. Conclusively, Elymus borianus (endemic to Swat, Pakistan), E. russelli, E. caninus, E. longioristatus, and E. dauhuricus outperformed the check wheat cultivar, Pirsabak 2005, which is a rainfed variety. The results revealed that Elymus species belonging to the tertiary gene pool of bread wheat could be an excellent drought tolerance source for use in a breeding program.

6.
Genes (Basel) ; 13(9)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36140700

RESUMEN

Objective: The objective was to study the association of Klotho gene G395A and C1818T single nucleotide polymorphisms with glycemia, serum, glycosylated hemoglobin (HbA1c) level and the risk of type 2 diabetes mellitus (T2DM) in the Pashtun population of Pakistan. Methods: In this study, 195 normal individuals and 217 T2DM patients were enrolled. All subjects were divided into three groups, namely overall subjects (control + T2DM patients), control individuals and T2DM patients, and their fasting glucose, HbA1c level, lipid profile and C1818T and G395A polymorphisms were determined. Results: The allele frequencies of G395A in overall subjects were 0.568 for A and 0.432 for G. Similarly, allele frequencies for G395A in overall subjects were 0.597 and 0.403 for C and T alleles, respectively. The AA genotype of G395A was observed to be a risk factor for T2DM. In normal individuals, no significant (p > 0.05) association was observed between klotho C1818T and G395A polymorphisms and hyperglycemia. In overall subjects, the C1818T polymorphism was associated (p < 0.05) with high fasting glucose and HbA1c levels in female subjects only. In T2DM patients, both C1818T and G395A polymorphisms were found to be significantly (p < 0.05) associated with high fasting glucose and HbA1c levels both in males and females. Conclusion: The G395A polymorphism was observed to increase the risk of T2DM. Both C1818T and G395 were associated with high fasting glucose and HbA1c levels in T2DM patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas Klotho , Glucemia , Diabetes Mellitus Tipo 2/genética , Femenino , Genotipo , Glucuronidasa/genética , Hemoglobina Glucada/genética , Humanos , Hidrolasas/genética , Proteínas Klotho/genética , Lípidos , Masculino , Polimorfismo de Nucleótido Simple
7.
Oxid Med Cell Longev ; 2022: 4189083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36132230

RESUMEN

The administration of 4,7-didehydro-neophysalin B is expected to be a promising strategy for mitigating oxidative stress in respiratory diseases. This study was aimed at investigating the efficacy of 4,7-didehydro-neophysalin B for apoptosis resistance of rat lung epithelial cells (RLE-6TN) to oxidative stress and evaluating its underlying mechanism of action. The RLE-6TN cells treated with hydrogen peroxide (H2O2) were divided into five groups, and 4,7-didehydro-neophysalin B was administered into it. To evaluate its mechanism of action, the expression of oxidative stress and apoptotic proteins was investigated. 4,7-Didehydro-neophysalin B significantly inhibited H2O2-induced RLE-6TN cell damage. It also activated the Nrf2 signaling pathway which was evident from the increased transcription of antioxidant responsive of KLF9, NQO1, Keap-1, and HO-1. Nrf2 was found to be a potential target of 4,7-didehydro-neophysalin B. The protein levels of Bcl-2 and Bcl-xL were increased while Bax and p53 were decreased significantly. Flow cytometry showed that 4,7-didehydro-neophysalin B protected RLE-6TN cells from apoptosis and has improved the oxidative damage. This study provided a promising evidence that 4,7-didehydro-neophysalin B can be a therapeutic option for oxidative stress in respiratory diseases.


Asunto(s)
Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Animales , Ratas , Antioxidantes/farmacología , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Pulmón/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
8.
In Vitro Cell Dev Biol Anim ; 58(9): 798-809, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36178582

RESUMEN

The purpose of this study was to establish a system for the isolation, culture, and differentiation of sheep myoblasts, and to explore the expression patterns as well as mutual relationships of muscle-specific genes. Sheep fetal myoblasts (SFMs) were isolated by two-step enzymatic digestion, purified by differential adhesion and identified using immunofluorescence techniques. Two percent horse serum was used to induce differentiation in SFMs. Real-time quantitative and Western blot analyses were respectively used to detect the mRNA and protein expressions of muscle-specific genes including MyoD, MyoG, Myf5, Myf6, PAX3, PAX7, myomaker, desmin, MYH1, MYH2, MYH4, MYH7, and MSTN during the differentiation of SFMs. Finally, the correlation between muscle-specific genes was analyzed by the Pearson correlation coefficient method. The results showed that the isolated and purified SFMs could form myotubes after the induction for differentiation. The marker factors including MyoD, MyoG, myomaker, desmin, and MyHC were positively stained in SFMs. The mRNA expressions of MyoD, MyoG, and myomaker increased and then decreased, while Myf5, PAX3, and PAX7 decreased; Myf6, desmin, MYH1, MYH2, MYH4, and MYH7 increased; and MSTN fluctuated up and down during the differentiation of SFMs. The expression patterns of protein were basically consistent with those of mRNA except MSTN. There existed significant or highly significant correlations at mRNA or protein level among some genes. Some transcription factor proteins (MyoD, Myf5, Myf6, PAX3, PAX7) showed significant or highly significant correlations with the mRNA level of some other genes and/or themselves. In conclusion, SFMs with good myogenic differentiation ability were successfully isolated, and the expression patterns and correlations of muscle-specific genes during SFM differentiation were revealed, which laid an important foundation for elucidating the gene regulation mechanism of sheep myogenesis.


Asunto(s)
Desarrollo de Músculos , Mioblastos , Ovinos , Animales , Desmina/genética , Desmina/metabolismo , Mioblastos/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Diferenciación Celular/genética , Proteína MioD/genética
9.
Front Plant Sci ; 13: 960948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160992

RESUMEN

Malnutrition is mainly caused by iron and zinc micronutrient deficiencies affecting about half of the world's population across the globe. Biofortification of staple crops is the right approach to overcome malnutrition and enhance nutrient contents in the daily food of humans. This study aimed to evaluate the role of foliar application of iron and zinc in Trichoderma harzianum treated soil on various growth characteristics, quality, and yield of wheat varieties. Plants were examined in the absence/presence of T. harzianum, and iron and zinc micronutrients in both optimal and high-stress conditions. Although the symbiotic association of T. harzianum and common wheat is utilized as an effective approach for wheat improvement because of the dynamic growth promoting the ability of the fungus, this association was found tremendously effective in the presence of foliar feeding of micronutrients for the enhancement of various growth parameters and quality of wheat. The utilization of this approach positively increased various growth parameters including spike length, grain mass, biomass, harvest index, and photosynthetic pigments. The beneficial role of T. harzianum in combination with zinc and iron in stimulating plant growth and its positive impact on the intensities of high molecular weight glutenin subunits (HMW-GS) alleles make it an interesting approach for application in eco-friendly agricultural systems. Further, this study suggests a possible alternative way that does not merely enhances the wheat yield but also its quality through proper biofortification of iron and zinc to fulfill the daily needs of micronutrients in staple food.

10.
BMC Vet Res ; 18(1): 311, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35965338

RESUMEN

BACKGROUND: In the livestock feed industry, feed and feed raw materials are extremely susceptible to mycotoxin contamination. Deoxynivalenol (DON) is one of the main risk factors for mycotoxin contamination in broiler feed and feedstuff, however, there is still little knowledge about this. Hence, the purpose of this study was to explore the toxicity effect of DON on the intestinal barrier and the microecological balance of the biota in broiler chickens. RESULTS: In our present study, we compared the pathological scores of the small intestines of broilers on the 5th, 7th, and 10th day, and chose the 7th day to analyze the small intestine histomorphology, tight junctions, and cecal biota of the broilers. The results showed the damage to the small intestine worsened over time, the small intestinal villi of broilers were breakage, the tight junctions of the small intestine were destroyed, the cecal biota was unbalanced, and the growth performance of broilers was reduced on the 7th day. CONCLUSIONS: DON could damage the functional and structural completeness of the intestinal tract, disorder the Intestinal biota, and finally lead to declined broiler performance. Our study provided a basis for the prevention and treatment of DON in broiler production.


Asunto(s)
Pollos , Micotoxinas , Alimentación Animal/análisis , Animales , Biota , Contaminación de Alimentos/análisis , Micotoxinas/efectos adversos , Tricotecenos
11.
BMC Vet Res ; 18(1): 179, 2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568854

RESUMEN

BACKGROUND: Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most important porcine viral diseases which have been threatening the pig industry in China. At present, most commercial vaccines fail to provide complete protection because of highly genetic diversity of PRRSV strains. This study aimed to optimize a component formula from traditional Chinese medicine(TCM)compounds with defined chemical characteristics and clear mechanism of action against PRRSV. METHODS: A total of 13 natural compounds were screened for the anti-PRRSV activity using porcine alveolar macrophages (PAMs). Three compounds with strong anti-PRRSV activity were selected to identify their potential protein targets by proteomic analysis. The optimal compound formula was determined by orthogonal design based on the results of proteomics. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each compound using PAMs. QPCR and western blot were used to investigate the PRRSV N gene and protein expression, respectively. The Tandem Mass Tag (TMT) technique of relative quantitative proteomics was used to detect the differential protein expression of PAMs treated with PRRSV, matrine (MT), glycyrrhizic acid (GA) and tea saponin (TS), respectively. The three concentrations of these compounds with anti-PRRSV activity were used for orthogonal design. Four formulas with high safety were screened by MTT assay and their anti-PRRSV effects were evaluated. RESULTS: MT, GA and TS inhibited PRRSV replication in a dose-dependent manner. CCL8, IFIT3, IFIH1 and ISG15 were the top four proteins in expression level change in cells treated with MT, GA or TS. The relative expression of IFIT3, IFIH1, ISG15 and IFN-ß mRNAs were consistent with the results of proteomics. The component formula (0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 µg/mL TS) showed synergistic anti-PRRSV effect. CONCLUSIONS: The component formula possessed anti-PRRSV activity in vitro, in which the optimal dosage on PAMs was 0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 µg/mL TS. Compatibility of the formula was superposition of the same target with GA and TS, while different targets of MT. IFN-ß may be one of the targets of the component formula possessed anti-PRRSV activity.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Saponinas , Enfermedades de los Porcinos , Animales , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferón beta/metabolismo , Macrófagos Alveolares , Proteómica , Porcinos , Enfermedades de los Porcinos/metabolismo , Replicación Viral
12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1015695

RESUMEN

Long non-coding RNA (lncRNA) is a type of non-coding RNA with the more than 200 nucleotides. Several lncRNAs have been identified as the potential targets for cancer therapy. LncRNA00067110 is one of the differentially expressed genes in the transcriptome profiles of melanoma B16-F10 cells compared to normal mice melanocytes. To investigate whether lncRNA00067110 regulates the proliferation, apoptosis and melanogenesis of B16-F10 cells, the calcium-binding tyrosine phosphorylation regulated protein (Cabyr) target gene was predicted by LncTar and verified by dual luciferase activities. The regulating function of lncRNA00067110 was investigated by the analysis of transcriptome profiles and to detect the proliferation, apoptosis and melanin production of B16-F10 cells transfected by the overexpression plasmids of lncRNA00067110. The results showed that the relationship of lncRNA00067110 targeting Cabyr, the mRNA and protein levels of proliferation (MEK/ERK/MNK/CREB) and melanogenesis-related genes (TYR family and CREB) were significantly down-regulated, while the mRNA and protein levels of apoptosis-related genes (AKT and Bcl-2) were up-regulated in B16-F10 cells with lncRNA00067110 overexpression. The transcriptome profile of B16-F10 cells with lncRNA00067110 overexpression showed that 17 genes were differentially expressed, among which Cabyr was up-regulated. Furthermore, the effect of lncRNA00067110 on the phenotypes of cell proliferation and apoptosis were verified. The results suggested that lncRNA00067110 might be a novel target for the treatment of melanoma by targeting Cabyr, which regulate the expression of related genes to inhibit the proliferation and melanogenesis, as well as to induce the apoptosis of B16-F10 cells.

13.
Epigenetics Chromatin ; 14(1): 52, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863249

RESUMEN

Neural tube defects (NTDs) remain one of the most life-threatening birth defects affecting infants. Most patients with NTDs eventually develop lifelong disability, which cause significant morbidity and mortality and seriously reduce the quality of life. Our previous study has found that ethionine inhibits cell viability by disrupting the balance between proliferation and apoptosis, and preventing neural stem cells from differentiating into neurons and astrocytes. However, how ethionine participates in the pathogenesis of neural tube development through N6-methyladenosine (m6A) modification remains unknown. This study aims to investigate METTL3- and ALKBH5-mediated m6A modification function and mechanism in NTDs. Herein, our results demonstrate that SAM play not only a compensatory role, it also leads to changes of m6A modification in neural tube development and regulation. Additionally, these data implicate that METTL3 is enriched in HT-22 cells, and METTL3 knockdown reduces cell proliferation and increases apoptosis through suppressing Wnt/ß-catenin signaling pathway. Significantly, overexpression of ALKBH5 can only inhibit cell proliferation, but cannot promote cell apoptosis. This research reveals an important role of SAM in development of NTDs, providing a good theoretical basis for further research on NTDs. This finding represents a novel epigenetic mechanism underlying that the m6A modification has profound and lasting implications for neural tube development.


Asunto(s)
Defectos del Tubo Neural , Vía de Señalización Wnt , Animales , Etionina , Humanos , Ratones , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/genética , Calidad de Vida , S-Adenosilmetionina
14.
Cell Cycle ; 20(22): 2372-2386, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34779712

RESUMEN

Previously our results showed miR-222-3p was significantly downregulated in retinoic acid-induced neural tube defect (NTD) mouse model through transcriptome. Down-regulation of miR-222-3p may be a causative biomarker in NTDs. In this study, RNA was extracted from mouse embryos at E8.5, E9.5 and E10.5, and the expression level of miR-222-3p was measured by quantitative real-time PCR analysis. The preliminary mechanism of miR-222-3p in NTDs involved in cell proliferation, apoptosis and migration was investigated in mouse HT-22 cell line. The expression of miR-222-3p was significantly decreased at E8.5, E9.5 and E10.5 developed in mouse embryos which were consistent with our transcriptome sequencing. Suppression of miR-222-3p in HT-22 cells resulted in the inhibition of cell proliferation and migration, cell cycle and apoptosis. Moreover, DNA damage transcript 4 (Ddit4) was identified as a direct and functional target of miR-222-3p. miR-222-3p is negatively regulated by Ddit4. The mutation of binding site of Ddit4 3'UTR abrogated the responsiveness of luciferase reporters to miR-222-3p and showed that Ddit4 expression partially attenuated the function of miR-222-3p. We preliminatively confirmed that low expression of miR-222-3p has reduced the expression of ß-catenin, TCF4 and other related genes in the Wnt/ß-catenin signaling pathway.Collectively, these results demonstrated that miR-222-3p regulates the Wnt/ß-catenin signaling pathway through Ddit4 inhibition in HT-22 cells, resulted in cell proliferation and apoptosis imbalance, and thus led to neural tube defects.


Asunto(s)
MicroARNs , Defectos del Tubo Neural , Factores de Transcripción , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Daño del ADN , Regulación Neoplásica de la Expresión Génica , Ratones , MicroARNs/metabolismo , Tubo Neural/metabolismo , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
15.
Chin Med J (Engl) ; 134(22): 2730-2737, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732664

RESUMEN

BACKGROUND: Shenque (CV8) acupoint is located on the navel and has been therapeutically used for more than 2000 years in Traditional Chinese Medicine (TCM). However, clinical research on the underlying therapeutic molecular mechanisms of the CV8 acupoint lags far behind. This study aimed to study the mechanisms of umbilical acupoint therapy by using stem cells. METHODS: The morphological characteristics of CV8 acupoint were detected under a stereomicroscope using hematoxylin and eosin (H&E) staining. Oil Red, Masson, and immunohistochemical staining on multi-layered slices were used to identify the type of cells at the CV8 acupoint. Cell proliferation was measured by a cell counting kit-8 (CCK-8) method. Flow cytometry and immunohistochemistry were used for cell identification. Induced differentiation was used to compare the differentiation of cells derived from CV8 acupoint and non-acupoint somatic stem cells into other cell types, such as osteogenic, adipogenic, and neural stem cell-like cells. RESULTS: Morphological observations showed that adipose tissues at the linea alba of the CV8 acupoint in mice had a mass-like distribution. Immunohistochemical staining confirmed the distribution of stem cell antigen-1 (Sca-1) positive cells in the multi-layered slices of CV8 acupoint tissues. Cells isolated from adipose tissues at the CV8 acupoint exhibited high expression of Sca-1 and CD44 and low expression of CD31 and CD34, and these cells possessed osteogenic, adipogenic, and neurogenic stem cell-like cell differentiation ability. The cell proliferation (day 4: 0.5138 ±â€Š0.0111 vs. 0.4107 ±â€Š0.0180, t = 8.447, P = 0.0011; day 5: 0.6890 ±â€Š0.0070 vs. 0.5520 ±â€Š0.0118, t = 17.310, P < 0.0001; day 6: 0.7320 ±â€Š0.0090 vs. 0.6157 ±â€Š0.0123, t = 13.190, P = 0.0002; and day 7: 0.7550 ±â€Š0.0050 vs. 0.6313 ±â€Š0.0051, t = 42.560, P < 0.0001), adipogenic ([9.224 ±â€Š0.345]% vs. [3.933 ±â€Š1.800]%, t = 5.000, P = 0.0075), and neurogenic stem cell-like cell differentiation (diameter < 50 µm: 7.2000 ±â€Š1.3040 vs. 2.6000 ±â€Š0.5477, t = 7.273, P < 0.0001; diameter 50-100 µm: 2.6000 ±â€Š0.5477 vs. 1.0000 ±â€Š0.7071, t = 4.000, P = 0.0039; and diameter >100 µm: 2.6000 ±â€Š0.5477 vs. 0.8000 ±â€Š0.8367, t = 4.025, P = 0.0038) were significantly enhanced in somatic stem cells derived from the CV8 acupoint compared to somatic stem cells from the groin non-acupoint. However, cells possessed significantly weaker osteogenicity ([2.697 ±â€Š0.627]% vs. [7.254 ±â€Š0.958]%, t = 6.893, P = 0.0023) in the CV8 acupoint group. CONCLUSIONS: Our study showed that CV8 acupoint was rich with adipose tissues that contained abundant somatic stem cells. The biological examination of somatic stem cells derived from the CV8 acupoint provided novel insights for future research on the mechanisms of umbilical therapy.


Asunto(s)
Puntos de Acupuntura , Células Madre Adultas , Tejido Adiposo , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Osteogénesis
16.
Ecotoxicol Environ Saf ; 227: 112865, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34634598

RESUMEN

Zearalenone(ZEA) is a kind of mycotoxin widely existing in nature, its toxic effects can lead to the reproductive disorders in humans and animals. The aim of this study was to investigate the mechanism of scutellarin against ovarian granulosa cell(GCs) injury induced by ZEA based on network pharmacology, molecular docking method. The results show that 293 drug targets of scutellarin were found from PhamMapper database, and 583 disease targets were selected from Genecards database. Finally, 57 scutellarin targets were obtained for the repair of GCs injury with gene intersection. The protein-protein interaction(PPI), gene ontology(GO) and kyoto encyclopedia of genes and genomes(KEGG) analysis indicated that MAPK signaling pathway was most likely activated by scutellarin. Scutellarin with JNK or Caspase-3 had minimal and negative free binding energy in molecular docking analysis, indicating that they might be the acting targets of scutellarin. Cell viability was significantly decreased in ZEA treated cells. However, GCs viability, the level of estradiol(E2) and progesterone(P4) were significantly increased with addition of scutellarin to ZEA treated cells. Western blot analysis showed that scutellarin significantly reduced the expression of JNK, c-jun and Cleaved-caspasee-3 in GCs compared with ZEA treatment. In conclusion, scutellarin could alleviate the ovarian GCs injury by down-regulating the expression of JNK, c-jun and Cleaved-caspase-3 through the activation of MAPK/JNK signaling pathway. Our results will provide a theoretical foundation for the treatment of reproductive disorders with scutellarin.


Asunto(s)
Zearalenona , Animales , Apigenina/farmacología , Femenino , Glucuronatos , Células de la Granulosa , Humanos , Simulación del Acoplamiento Molecular , Zearalenona/toxicidad
17.
BMC Vet Res ; 17(1): 318, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34587973

RESUMEN

BACKGROUND: Encephalomyocarditis virus (EMCV) infection can cause reproductive failure in sows and acute myocarditis and sudden death in piglets. It has caused huge economic losses to the global pig industry and that is why it is necessary to develop effective new treatment compounds. Zedoary turmeric oil has been used for treating myocarditis. Curcumol extracted from the roots of curcuma is one of the main active ingredient of zedoary turmeric oil. The anti-EMCV activity of curcumol along with the molecular mechanisms involved with a focus on IFN-ß signaling pathway was investigated in this study. METHOD: 3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the maximum non-toxic concentration (MNTC), 50% cytotoxic concentration (CC50), maximum inhibition rate (MIR) and 50% effective concentration (EC50) against EMCV. Through EMCV load, the anti-viral effect of curcumol was quantitatively determined using real-time quantitative PCR (qPCR). The effect of curcumol on the expression of IFN-ß was investigated using real-time quantitative PCR and ELISA. Western blot was used to determine the amounts of MDA5, MAVS, TANK, IRF3 and P-IRF3 proteins in human embryonic kidney 293 T (HEK-293 T) cells infected with EMCV. RESULTS: The results of MTT showed that compared with the ribavirin positive control group, the maximum inhibition ratio (MIR) of curcumol was greater but the selection index (SI) value was much smaller than that of ribavirin. The results of qPCR showed that curcumol and ribavirin significantly reduced the replication of EMCV in HEK-293 T cells. The curcumol (0.025 mg/mL) treatment has significantly increased IFN-ß mRNA expression in the EMCV-infected HEK-293 T cells while ribavirin treatment did not. The results of ELISA showed that curcumol (0.025 mg/mL and 0.0125 mg/mL) has significantly increased the expression of IFN-ß protein in EMCV-infected HEK-293 T cells. The results of Western blot showed that curcumol can inhibit the degradation of TANK protein mediated by EMCV and promote the expression of MDA5 and P-IRF3, while the protein expression level of MAVS and IRF3 remain unchanged. CONCLUSION: Curcumol has biological activity against EMCV which we suggest that IFN-ß signaling pathway is one of its mechanisms.


Asunto(s)
Antivirales/farmacología , Virus de la Encefalomiocarditis/efectos de los fármacos , Sesquiterpenos/farmacología , Infecciones por Cardiovirus/tratamiento farmacológico , Infecciones por Cardiovirus/virología , Células HEK293 , Humanos , Interferón beta/efectos de los fármacos , Interferón beta/metabolismo , Ribavirina/farmacología , Sesquiterpenos/toxicidad , Transducción de Señal/efectos de los fármacos , Replicación Viral/efectos de los fármacos
18.
Vet Res ; 52(1): 93, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162433

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) induces respiratory disease and reproductive failure accompanied by gastroenteritis-like symptoms. The mechanism of intestinal barrier injury caused by PRRSV infection in piglets has yet to be investigated. An in vivo PRRSV-induced model was established in 30-day-old piglets by the intramuscular injection of 2 mL of 104 TCID50/mL PRRSV for 15 days. Observations of PRRSV replication and histology were conducted in the lungs and intestine, and goblet cell counts, relative MUC2 mRNA expression, and tight junction protein, proinflammatory cytokine, TLR4, MyD88, IκB and p-IκB expression were measured. PRRSV replicated in the lungs and small intestine, as demonstrated by absolute RT-qPCR quantification, and the PRRSV N protein was detected in the lung interstitium and jejunal mucosa. PRRSV infection induced both lung and gut injury, markedly decreased villus height and the villus to crypt ratio in the small intestine, and obviously increased the number of goblet cells and the relative expression of MUC2 mRNA in the jejunum. PRRSV infection aggravated the morphological depletion of tight junction proteins and increased IL-1ß, IL-6, IL-8 and TNF-α expression by activating the NF-κB signalling pathway in the jejunum. PRRSV infection impaired intestinal integrity by damaging physical and immune barriers in the intestine by inducing inflammation, which may be related to the regulation of the gut-lung axis. This study also provides a new hypothesis regarding the pathogenesis of PRRSV-induced diarrhoea.


Asunto(s)
Expresión Génica , Células Caliciformes/virología , Yeyuno/virología , Síndrome Respiratorio y de la Reproducción Porcina/fisiopatología , Proteínas de Uniones Estrechas/genética , Replicación Viral , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Sus scrofa , Porcinos , Proteínas de Uniones Estrechas/metabolismo
19.
Luminescence ; 36(7): 1671-1683, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34164901

RESUMEN

Cationic carbon dots (CCDs) are a promising alternative to gene-delivery systems, and good biosafety levels are crucial for their in vivo use. In this study, spherical and monodispersed CCDs with an average surface potential of +28.7 mV were prepared using sucrose and glutamate (denoted SG-CCDs) using a one-pot autoclave-assisted method. Molecular interactions between the SG-CCDs and four major human serum proteins (albumin, immunoglobulin G, fibrinogen, and transferrin) were investigated. The results were further verified on human serum, and the effect of the SG-CCDs on in vitro blood coagulation was examined. The results showed that the fluorescence of human serum was clearly quenched by the SG-CCDs through a dynamic collision mechanism. Moreover, SG-CCDs at a concentration of 20 µM exhibited minor effects on the secondary structure of human serum. The activated partial thromboplastin and prothrombin time as well as the fibrinogen concentration were not changed, indicating that the SG-CCDs did not interfere with the coagulation process. This study provided an understandable background on the behaviour of CCDs in clinical applications.


Asunto(s)
Coagulación Sanguínea , Carbono , Proteínas Sanguíneas , Cationes , Humanos
20.
Cell Death Dis ; 12(3): 234, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664222

RESUMEN

Wnt signaling plays a major role in early neural development. An aberrant activation in Wnt/ß-catenin pathway causes defective anteroposterior patterning, which results in neural tube closure defects (NTDs). Changes in folate metabolism may participate in early embryo fate determination. We have identified that folate deficiency activated Wnt/ß-catenin pathway by upregulating a chorion-specific transcription factor Gcm1. Specifically, folate deficiency promoted formation of the Gcm1/ß-catenin/T-cell factor (TCF4) complex formation to regulate the Wnt targeted gene transactivation through Wnt-responsive elements. Moreover, the transcription factor Nanog upregulated Gcm1 transcription in mESCs under folate deficiency. Lastly, in NTDs mouse models and low-folate NTDs human brain samples, Gcm1 and Wnt/ß-catenin targeted genes related to neural tube closure are specifically overexpressed. These results indicated that low-folate level promoted Wnt/ß-catenin signaling via activating Gcm1, and thus leaded into aberrant vertebrate neural development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Deficiencia de Ácido Fólico/metabolismo , Defectos del Tubo Neural/metabolismo , Tubo Neural/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Deficiencia de Ácido Fólico/complicaciones , Deficiencia de Ácido Fólico/genética , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Tubo Neural/anomalías , Defectos del Tubo Neural/etiología , Defectos del Tubo Neural/genética , Embarazo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...