Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 5335-5363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859956

RESUMEN

The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Animales , Streptococcus pyogenes/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/química
2.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474604

RESUMEN

Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/ß-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.


Asunto(s)
Luteolina , Neoplasias , Humanos , Luteolina/farmacología , Flavonoides/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Neoplasias/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Apoptosis , Proliferación Celular , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Cureus ; 15(12): e50010, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38077669

RESUMEN

Background The spleen is one of the most common solid organs injured in blunt abdominal trauma with significant mortality. The management of splenic injury has significantly changed over the last few decades, ranging from certain splenectomies to non-operative management (NOM). Although several retrospective studies have been published on the NOM of minor spleen injuries, few studies have analyzed the results of NOM for high-grade splenic injuries. The pertinent question that we attempt to answer is, "Is it possible to manage extensive splenic injuries non-operatively?". Objectives To study the feasibility of NOM for the American Association for the Surgery of Trauma (AAST) Grade 3, 4, and 5 splenic injuries and to assess the demographic profile and cases for AAST Grade 3, 4, and 5 splenic injuries. Methods and methodology We, retrospectively, studied patients admitted with AAST Grade 3, 4, and 5 splenic injuries from blunt abdominal trauma admitted at the Government Medical College, Thiruvananthapuram, India, between January 2014 and October 2020. Their demographics, grade of splenic injuries, associated injuries, and methods of management were collected, and statistical analysis was done. Results The study included 132 patients with AAST Grade 3, 4, and 5 splenic injuries. Fifty percent of patients had Grade 3 injuries, 39.4% had Grade 4 injuries, and 10.6% were found to have Grade 5 splenic injuries. Grade 3 and 4 injuries were mainly managed non-operatively, while Grade 5 injuries had a failure rate of nearly 65% when managed non-operatively. Additionally, 73.5% of splenic injuries were successfully managed non-operatively. A significant association was noted between the severity of injuries and the need for operative management (p<0.001). Meanwhile, 64.29% of the patients with Grade 5 splenic injuries ended up needing operative management, as opposed to 34.62% in Grade 4 and 12.12% in Grade 3 splenic injuries. Conclusion We suggest that NOM may be undertaken successfully in appropriately designed areas with close observation for hemodynamically stable patients with extra vigilance in the case of the elderly and those with associated injuries. There should be a low threshold for switching to operative management, especially in Grade 5 injuries.

4.
Biomedicines ; 11(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38137424

RESUMEN

Cancer is a major public health concern worldwide in terms of mortality. The exact reason behind the development of cancer is not understood clearly, but it is evidenced that alcohol consumption, radiation, and exposure to chemicals are main players in this pathogenesis. The current mode of treatments such as surgery, chemotherapy, and radiotherapy are effective, but, still, cancer is a major problem leading to death and other side effects. However, safer and effective treatment modules are needed to overcome the adverse effects of current treatment modules. In this regard, natural compounds have been recognized to ameliorate diseases by exerting anti-inflammatory, anti-oxidative, and anti-tumor potential through several mechanisms. Mangiferin, a xanthone C-glucoside, is found in several plant species including Mangifera indica (mango), and its role in disease prevention has been confirmed through its antioxidant and anti-inflammatory properties. Furthermore, its anti-cancer-potential mechanism has been designated through modulation of cell signaling pathways such as inflammation, angiogenesis, PI3K/AKT, apoptosis, and cell cycle. This article extensively reviews the anticancer potential of mangiferin in different cancers through the modulation of cell signaling pathways. Moreover, the synergistic effects of this compound with some commonly used anti-cancer drugs against different cancer cells are discussed. More clinical trials should be performed to reconnoiter the anti-cancer potential of this compound in human cancer treatment. Further, understanding of mechanisms of action and the safety level of this compound can help to manage diseases, including cancer.

5.
Int J Nanomedicine ; 18: 5531-5559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795042

RESUMEN

The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Inmunoterapia Adoptiva , Linfocitos T , Neoplasias/genética , Neoplasias/terapia
6.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298616

RESUMEN

Cancer is a major public health concern worldwide and main burden of the healthcare system. Regrettably, most of the currently used cancer treatment approaches such as targeted therapy, chemotherapy, radiotherapy and surgery usually cause adverse complications including hair loss, bone density loss, vomiting, anemia and other complications. However, to overcome these limitations, there is an urgent need to search for the alternative anticancer drugs with better efficacy as well as less adverse complications. Based on the scientific evidences, it is proven that naturally occurring antioxidants present in medicinal plants or their bioactive compounds might constitute a good therapeutic approach in diseases management including cancer. In this regard, myricetin, a polyhydroxy flavonol found in a several types of plants and its role in diseases management as anti-oxidant, anti-inflammatory and hepato-protective has been documented. Moreover, its role in cancer prevention has been noticed through modulation of angiogenesis, inflammation, cell cycle arrest and induction of apoptosis. Furthermore, myricetin plays a significant role in cancer prevention through the inhibition of inflammatory markers such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2). Moreover, myricetin increases the chemotherapeutic potential of other anticancer drugs through modulation of cell signaling molecules activity. This review elaborates the information of myricetin role in cancer management through modulating of various cell-signaling molecules based on in vivo and in vitro studies. In addition, synergistic effect with currently used anticancer drugs and approaches to improve bioavailability are described. The evidences collected in this review will help different researchers to comprehend the information about its safety aspects, effective dose for different cancers and implication in clinical trials. Moreover, different challenges need to be focused on engineering different nanoformulations of myricetin to overcome the poor bioavailability, loading capacity, targeted delivery and premature release of this compound. Furthermore, some more derivatives of myricetin need to be synthesized to check their anticancer potential.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Transducción de Señal , Inflamación/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Neoplasias/tratamiento farmacológico , Apoptosis
7.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37298670

RESUMEN

Cancer is one of the main causes of death in all developed and developing countries. Various factors are involved in cancer development and progression, including inflammation and alterations in cellular processes and signaling transduction pathways. Natural compounds have shown health-promoting effects through their antioxidant and anti-inflammatory potential, having an important role in the inhibition of cancer growth. In this regard, formononetin, a type of isoflavone, plays a significant role in disease management through the modulation of inflammation, angiogenesis, cell cycle, and apoptosis. Furthermore, its role in cancer management has been proven through the regulation of different signal transduction pathways, such as the signal transducer and activator of transcription 3 (STAT 3), Phosphatidyl inositol 3 kinase/protein kinase B (PI3K/Akt), and mitogen activating protein kinase (MAPK) signaling pathways. The anticancer potential of formononetin has been reported against various cancer types, such as breast, cervical, head and neck, colon, and ovarian cancers. This review focuses on the role of formononetin in different cancer types through the modulation of various cell signaling pathways. Moreover, synergistic effect with anticancer drugs and methods to improve bioavailability are explained. Thus, detailed studies based on clinical trials are required to explore the potential role of formononetin in cancer prevention and treatment.


Asunto(s)
Antineoplásicos , Isoflavonas , Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico
8.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239974

RESUMEN

Cancer is the principal cause of death and its incidence is increasing continuously worldwide. Various treatment approaches are in practice to treat cancer, but these treatment strategies may be associated with severe side effects and also produce drug resistance. However, natural compounds have established their role in cancer management with minimal side effects. In this vista, kaempferol, a natural polyphenol, mainly found in vegetables and fruits, has been revealed to have many health-promoting effects. Besides its health-promoting potential, its anti-cancer potential has also been described in in vivo as well as in in vitro studies. The anti-cancer potential of kaempferol has been proven through modulation of cell signaling pathways in addition to the induction of apoptosis and cell cycle arrest in cancer cells. It leads to the activation of tumor suppressor genes, inhibition of angiogenesis, PI3K/AKT pathways, STAT3, transcription factor AP-1, Nrf2 and other cell signaling molecules. Poor bioavailability of this compound is one of the major limitations for its proper and effective disease management actions. Recently, some novel nanoparticle-based formulations have been used to overcome these limitations. The aim of this review is to provide a clear picture regarding the mechanism of action of kaempferol in different cancers through the modulation of cell signaling molecules. Besides this, strategies to improve the efficacy and synergistic effects of this compound have also been described. However, more studies are needed based on clinical trials to fully explore the therapeutic role of this compound, especially in cancer treatment.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Quempferoles/farmacología , Quempferoles/uso terapéutico , Quempferoles/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal , Inflamación , Apoptosis
9.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108214

RESUMEN

The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica , Neoplasias/genética , Neoplasias/terapia , Tecnología
10.
Metabolites ; 13(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677055

RESUMEN

Diabetes mellitus is a metabolic syndrome characterized by increased glucose levels, oxidative stress, hyperlipidemia, and frequently decreased insulin levels. The current research was carried out for eight consecutive weeks to evaluate the possible reno-protective effects of quercetin (50 mg/kg b.w.) on streptozotocin (STZ) (55 mg/kg b.w.) induced diabetes rat models. Various physiological, biochemical, and histopathological parameters were determined in control, diabetic control, and quercetin-treated diabetic rats. The current findings demonstrated that diabetes control rats showed significantly decreased body weights (198 ± 10 vs. 214 ± 13 g) and insulin levels (0.28 ± 0.04 vs. 1.15 ± 0.05 ng/mL) in comparison to normal control. Besides this, the other parameters showed increased values, such as fasting blood glucose, triglyceride (TG), and total cholesterol levels (99 ± 5 vs. 230 ± 7 mg/dL, 122.9 ± 8.7 vs. 230.7 ± 7.2 mg/dL, 97.34 ± 5.7 vs. 146.3 ± 8 mg/dL) (p < 0.05). In addition, the urea and creatinine levels (39.9 ± 1.8 mg/dL and 102.7 ± 7.8 µmol/L) were also high in diabetes control rats. After 8 weeks of quercetin treatment in STZ-treated animals, body weight, insulin, and fasting blood sugar levels were significantly restored (p < 0.05). The inflammatory markers (TNF-α, IL-6, and IL-1ß) were significantly increased (52.64 ± 2, 95.64 ± 3, 23.3 ± 1.2 pg/mL) and antioxidant enzymes levels (SOD, GST, CAT, and GSH) were significantly decreased (40.3 ± 3 U/mg, 81.9 ± 10 mU/mg, 14.2 ± 2 U/mg, 19.9 ± 2 µmol/g) in diabetic rats. All the parameters in diabetic animals treated with quercetin were restored towards their normal values. Histopathological findings revealed that the quercetin-treated group showed kidney architecture maintenance, reduction of fibrosis, and decreased expression of COX-2 protein. These results determined that quercetin has reno-protective effects, and conclude that quercetin possesses a strong antidiabetic potential and might act as a therapeutic agent in the prevention or delay of diabetes-associated kidney dysfunction.

11.
Molecules ; 27(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36558146

RESUMEN

Cancer is a main culprit and the second-leading cause of death worldwide. The current mode of treatment strategies including surgery with chemotherapy and radiation therapy may be effective, but cancer is still considered a major cause of death. Plant-derived products or their purified bioactive compounds have confirmed health-promoting effects as well as cancer-preventive effects. Among these products, flavonoids belong to polyphenols, chiefly found in fruits, vegetables and in various seeds/flowers. It has been considered to be an effective antioxidant, anti-inflammatory and to play a vital role in diseases management. Besides these activities, flavonoids have been revealed to possess anticancer potential through the modulation of various cell signaling molecules. In this regard, fisetin, a naturally occurring flavonoid, has a confirmed role in disease management through antioxidant, neuro-protective, anti-diabetic, hepato-protective and reno-protective potential. As well, its cancer-preventive effects have been confirmed via modulating various cell signaling pathways including inflammation, apoptosis, angiogenesis, growth factor, transcription factor and other cell signaling pathways. This review presents an overview of the anti-cancer potential of fisetin in different types of cancer through the modulation of cell signaling pathways based on in vivo and in vitro studies. A synergistic effect with anticancer drugs and strategies to improve the bioavailability are described. More clinical trials need to be performed to explore the anti-cancer potential and mechanism-of-action of fisetin and its optimum therapeutic dose.


Asunto(s)
Flavonoides , Neoplasias , Humanos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Antioxidantes/farmacología , Flavonoles/farmacología , Flavonoles/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Apoptosis
12.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432119

RESUMEN

The roles of medicinal plants or their purified bioactive compounds have attracted attention in the field of health sciences due to their low toxicity and minimal side effects. Baicalein is an active polyphenolic compound, isolated from Scutellaria baicalensis, and plays a significant role in the management of different diseases. Epidemiologic studies have proven that there is an inverse association between baicalein consumption and disease severity. Baicalein is known to display anticancer activity through the inhibition of inflammation and cell proliferation. Additionally, the anticancer potential of baicalein is chiefly mediated through the modulation of various cell-signaling pathways, such as the induction of apoptosis, autophagy, cell cycle arrest, inhibition of angiogenesis, signal transducer and activator of transcription 3, and PI3K/Akt pathways, as well as the regulation of other molecular targets. Therefore, the current review aimed to explore the role of baicalein in different types of cancer along with mechanisms of action. Besides this, the synergistic effects with other anti-cancerous drugs and the nano-formulation based delivery of baicalein have also been discussed.


Asunto(s)
Flavanonas , Neoplasias , Fosfatidilinositol 3-Quinasas , Flavanonas/farmacología , Flavanonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Scutellaria baicalensis
13.
Cancer Commun (Lond) ; 42(12): 1257-1287, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209487

RESUMEN

Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9), an adaptive microbial immune system, has been exploited as a robust, accurate, efficient and programmable method for genome targeting and editing. This innovative and revolutionary technique can play a significant role in animal modeling, in vivo genome therapy, engineered cell therapy, cancer diagnosis and treatment. The CRISPR/Cas9 endonuclease system targets a specific genomic locus by single guide RNA (sgRNA), forming a heteroduplex with target DNA. The Streptococcus pyogenes Cas9/sgRNA:DNA complex reveals a bilobed architecture with target recognition and nuclease lobes. CRISPR/Cas9 assembly can be hijacked, and its nanoformulation can be engineered as a delivery system for different clinical utilizations. However, the efficient and safe delivery of the CRISPR/Cas9 system to target tissues and cancer cells is very challenging, limiting its clinical utilization. Viral delivery strategies of this system may have many advantages, but disadvantages such as immune system stimulation, tumor promotion risk and small insertion size outweigh these advantages. Thus, there is a desperate need to develop an efficient non-viral physical delivery system based on simple nanoformulations. The delivery strategies of CRISPR/Cas9 by a nanoparticle-based system have shown tremendous potential, such as easy and large-scale production, combination therapy, large insertion size and efficient in vivo applications. This review aims to provide in-depth updates on Streptococcus pyogenic CRISPR/Cas9 structure and its mechanistic understanding. In addition, the advances in its nanoformulation-based delivery systems, including lipid-based, polymeric structures and rigid NPs coupled to special ligands such as aptamers, TAT peptides and cell-penetrating peptides, are discussed. Furthermore, the clinical applications in different cancers, clinical trials and future prospects of CRISPR/Cas9 delivery and genome targeting are also discussed.


Asunto(s)
Edición Génica , Neoplasias , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , ADN , Neoplasias/genética , Neoplasias/terapia
14.
Molecules ; 27(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36144783

RESUMEN

Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.


Asunto(s)
Apigenina , Neoplasias , Apigenina/farmacología , Apigenina/uso terapéutico , Apoptosis , Hormonas/farmacología , Humanos , Inflamación/tratamiento farmacológico , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Molecules ; 27(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35566016

RESUMEN

Cancer is among the most prominent causes of mortality worldwide. Different cancer therapy modes employed, including chemotherapy and radiotherapy, have been reported to be significant in cancer management, but the side effects associated with these treatment strategies are still a health problem. Therefore, alternative anticancer drugs based on medicinal plants or their active compounds have been generating attention because of their less serious side effects. Medicinal plants are an excellent source of phytochemicals that have been recognized to have health-prompting effects through modulating cell signaling pathways. Resveratrol is a well-known polyphenolic molecule with antioxidant, anti-inflammatory, and health-prompting effects among which its anticancer role has been best defined. Additionally, this polyphenol has confirmed its role in cancer management because it activates tumor suppressor genes, suppresses cell proliferation, induces apoptosis, inhibits angiogenesis, and modulates several other cell signaling molecules. The anticancer potential of resveratrol is recognized in numerous in vivo and in vitro studies. Previous experimental data suggested that resveratrol may be valuable in cancer management or improve the efficacy of drugs when given with anticancer drugs. This review emphasizes the potential role of resveratrol as an anticancer drug by modulating numerous cells signaling pathways in different types of cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Polifenoles/farmacología , Polifenoles/uso terapéutico , Resveratrol/farmacología , Resveratrol/uso terapéutico
16.
Biology (Basel) ; 11(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35053077

RESUMEN

This study investigated the health-promoting activities of methanolic extracts of Ajwa date seed and fruit pulp extracts through in vitro studies. These studies confirmed potential antioxidant, anti-hemolytic, anti-proteolytic, and anti-bacterial activities associated with Ajwa dates. The EC50 values of fruit pulp and seed extracts in methanol were reported to be 1580.35 ± 0.37 and 1272.68 ± 0.27 µg/mL, respectively, in the DPPH test. The maximum percentage of hydrogen peroxide-reducing activity was 71.3 and 65.38% for both extracts at 600 µg/mL. Fruit pulp and seed extracts inhibited heat-induced BSA denaturation by 68.11 and 60.308%, heat-induced hemolysis by 63.84% and 58.10%, and hypersalinity-induced hemolysis by 61.71% and 57.27%, and showed the maximum anti-proteinase potential of 56.8 and 51.31% at 600 µg/mL, respectively. Seed and fruit pulp inhibited heat-induced egg albumin denaturation at the same concentration by 44.31 and 50.84%, respectively. Ajwa seed showed minimum browning intensity by 63.2%, percent aggregation index by 64.2%, and amyloid structure by 63.8% at 600 µg/mL. At 100 mg/mL, Ajwa seed extract exhibited good antibacterial activity. Molecular docking analysis showed that ten active constituents of Ajwa seeds bind with the critical antioxidant enzymes, catalase (1DGH) and superoxide dismutase (5YTU). The functional residues involved in such interactions include Arg72, Ala357, and Leu144 in 1DGH, and Gly37, Pro13, and Asp11 in 5YTU. Hence, Ajwa dates can be used to develop a suitable alternative therapy in various diseases, including diabetes and possibly COVID-19-associated complications.

17.
Curr Issues Mol Biol ; 45(1): 1-11, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36661487

RESUMEN

Pro-inflammatory macrophage polarization is crucial in acute inflammatory diseases like Acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Prostaglandin E2 (PGE2) is believed to promote inflammation in such cases. Therefore, our study aimed to deliver anti-prostaglandin E synthase 2 small interfering RNA antibodies (anti-PGE2-siRNA) through lipid nanoparticles (LNPs) in RAW264.7 (The murine macrophage cell line) to find a possible cure to the acute inflammatory diseases. LNPs were synthesized by using thin layer evaporation method and were characterized by dynamic light scattering (DLS), Zeta potential, SEM and TEM analysis. The obtained NPs were spherical with an average size of 73 nm and zeta potential +29mV. MTT assay revealed that these NPs were non-toxic in nature. Gel retardation assay displayed 5:2 ratio of siRNA and NPs as the best siRNA:LNPs ratio for the delivery of siRNA into cells. After siRNA delivery by using LNPs, real time gene expression analysis revealed significant decrease in the expression of PGE2. Western blot results confirmed that silencing of PGE2 gene influence inducible nitric oxide synthase (iNOS) and interlukin-1ß (1L-1ß), markers involved in pro-inflammatory macrophage polarization. Our study revealed that LNPs synthesized in present study can be one of the effective methods to deliver anti-PGE2-siRNA to control pro-inflammatory macrophage polarization for the treatment of acute inflammatory response.

18.
Biomedicines ; 9(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34829902

RESUMEN

Acinetobacter baumannii has recently been increasing as an aggressive pathogen in immunocompromised persons. In the present study, we determined the in vitro antibacterial and anti-biofilm activity of thymoquinone (TQ) against A. baumannii. A liposomal formulation of TQ (Lip-TQ) was prepared and its therapeutic potential was investigated in the treatment of A. baumannii infection in immunocompromised mice. Leukopenia was induced in mice by injecting cyclophosphamide (CYP) at a dose of 200 mg/kg and the leukopenic mice were infected with 1 × 106 CFUs of A. baumannii. The effectiveness of free TQ or Lip-TQ against A. baumannii infection was assessed by analyzing the survival rate and bacterial burden. Moreover, the efficacy of Lip-TQ was also studied by examining the systemic inflammatory markers and the histological changes in the lung tissues. The results showed that the mice in the group treated with Lip-TQ at a dose of 10 mg/kg exhibited a 60% survival rate on day 40 post-infection, whereas all the mice treated with free TQ at the same dose died within this duration. Likewise, the lowest bacterial burden was found in the lung tissue of mice treated with Lip-TQ (10 mg/kg). Besides, Lip-TQ treatment remarkably alleviated the infection-associated inflammation, oxidative stress, and histological changes in the lung tissues. Based on the findings of the present study, we recommend considering Lip-TQ as a valuable therapeutic formulation in the treatment of A. baumannii-associated pneumonia in immunocompromised subjects.

19.
Int J Nanomedicine ; 16: 5065-5098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345172

RESUMEN

The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Antineoplásicos/farmacología , Oro , Humanos , Liposomas , Lisosomas , Neoplasias/tratamiento farmacológico
20.
PLoS One ; 16(7): e0253036, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34264954

RESUMEN

BACKGROUND: Although COVID-19 is an acute disease that usually resolves rapidly in most cases, the disease can be fatal and has a mortality rate of about 1% to 56%. Alveolar injury and respiratory failure are the main causes of death in patients with COVID 19. In addition, the effect of the disease on other organs is not fully understood. Renal system affection has been reported in patients with COVID 19 and is associated with a higher rate of diverse outcomes, including mortality. Therefore, in the present work, we reported the clinical characteristics and laboratory data of hospitalized patients with COVID-19 and analyzed the manifestations that indicated renal system involvement and their impact on clinical outcomes. MATERIALS AND METHODS: This was an observational retrospective study conducted at King Fahd Specialist Hospital, Buraydah, Saudi Arabia. All patients with COVID-19 who were admitted to this Hospital from April to December 2020 were included in the study. The patients' findings at presentation were recorded. Demographic data and laboratory results (hematuria, proteinuria, urinary sediment cast and pus cell presence, and kidney function tests) were retrieved from electronic patient records. RESULTS: One hundred and ninety-three patients with confirmed COVID 19 were included in the study. Dipstick examinations of all urine samples showed proteinuria and hematuria in 53.9% and 22.3% of patients, respectively, whereas microscopic examination revealed the presence of pus and brown muddy granular casts in 33.7% and 12.4% of samples, respectively. Acute kidney injury was reported in 23.3% of patients. A multivariable analysis demonstrated that hematuria was associated with acute kidney injury (AKI) (OR, 2.4; 95% CI, 1.2-4.9; P = 0.001), ICU admission (OR, 3.789; 95% CI, 1.913-7.505; P = 0.003), and mortality (OR, 8.084; 95% CI, 3.756-17.397; P = 0.002). Conversely, proteinuria was less significantly associated with the risk of AKI (OR, 1.56; 95% CI, 1.91-7.50; P = 0.003), ICU admission (OR, 2.493; 95% CI, 1.25-4.72; P = 0.001), and mortality (OR, 2.764; 95% CI, 1.368-5.121; P = 0.003). Patients with AKI had a higher probability for mortality than did those without AKI (OR, 14.208; 95% CI, 6.434-31.375; P = 0.003). CONCLUSION: The manifestations of the involvement of the renal system are not uncommon in COVID-19. These manifestations included proteinuria, hematuria, and AKI and were usually associated with a poor prognosis, including high incidences of both ICU admission and mortality.


Asunto(s)
Lesión Renal Aguda/patología , COVID-19/complicaciones , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/patología , Femenino , Humanos , Pacientes Internos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Arabia Saudita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...