Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352410

RESUMEN

Nager syndrome is a rare craniofacial and limb disorder characterized by midface retrusion, micrognathia, absent thumbs, and radial hypoplasia. This disorder results from haploinsufficiency of SF3B4 (splicing factor 3b, subunit 4) a component of the pre-mRNA spliceosomal machinery. The spliceosome is a complex of RNA and proteins that function together to remove introns and join exons from transcribed pre-mRNA. While the spliceosome is present and functions in all cells of the body, most spliceosomopathies - including Nager syndrome - are cell/tissue-specific in their pathology. In Nager syndrome patients, it is the neural crest (NC)-derived craniofacial skeletal structures that are primarily affected. To understand the pathomechanism underlying this condition, we generated a Xenopus tropicalis sf3b4 mutant line using the CRISPR/Cas9 gene editing technology. Here we describe the sf3b4 mutant phenotype at neurula, tail bud, and tadpole stages, and performed temporal RNA-sequencing analysis to characterize the splicing events and transcriptional changes underlying this phenotype. Our data show that while loss of one copy of sf3b4 is largely inconsequential in Xenopus tropicalis, homozygous deletion of sf3b4 causes major splicing defects and massive gene dysregulation, which disrupt cranial NC cell migration and survival, thereby pointing at an essential role of Sf3b4 in craniofacial development.

2.
Gels ; 9(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37623094

RESUMEN

Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds' ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.

3.
ACS Appl Mater Interfaces ; 14(24): 27675-27685, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35670525

RESUMEN

Rubber band ligation is a commonly used method for the removal of tissue abnormalities. Most often, rubber band ligation is performed to remove internal hemorrhoids unresponsive to first line treatments to avoid surgery. While the procedure is considered safe, patients experience mild to significant pain and discomfort until the tissue sloughs off. As patients often require multiple bandings and sessions, reducing these side effects can have a considerable effect on patient adherence and quality of life. To reduce pain and discomfort, we developed drug-eluting rubber bands for ligation procedures. We investigated the potential for a band to elute anesthetics and drug combinations to durably manage pain for a period of up to 5 days while exhibiting similar mechanical properties to conventional rubber bands. We show that the rubber bands retain their mechanical properties despite significant drug loading. Lidocaine, released from the bands, successfully altered the calcium dynamics of cardiomyocytes in vitro and modulated heart rate in zebrafish embryos, while the bands exhibited lower cytotoxicity than conventional bands. Ex vivo studies demonstrated substantial local drug release in enteric tissues. These latex-free bands exhibited sufficient mechanical and drug-eluting properties to serve both ligation and local analgesic functions, potentially enabling pain reduction for multiple indications.


Asunto(s)
Calidad de Vida , Pez Cebra , Animales , Humanos , Ligadura/efectos adversos , Ligadura/métodos , Dolor/etiología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...