Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 2): 132522, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768922

RESUMEN

The current study goal was to improve mucoadhesive potential and ocular pharmacokinetics of nanoparticles of thiolated xyloglucan (TXGN) containing moxifloxacin (MXF). Thiolation of xyloglucan (XGN) was achieved with esterification with 3-mercaptopropionic acid. TXGN was characterized by NMR and FTIR analysis. The nanoparticles of TXGN were prepared using ionic-gelation method and evaluate the antibacterial properties. TXGN and nanoparticles were determined to possess 0.06 and 0.08 mmol of thiol groups/mg of polymer by Ellman's method. The ex-vivo bioadhesion time of TXGN and nanoparticles was higher than XGN in a comparative assessment of their mucoadhesive properties. The creation of a disulfide link between mucus and TXGN is responsible for the enhanced mucoadhesive properties of TXGN (1-fold) and nanoparticles (2-fold) over XGN. Improved MXF penetration in nanoparticulate formulation (80 %) based on TXGN was demonstrated in an ex-vivo permeation research utilizing rabbit cornea. Dissolution study showed 95 % release of MXF from nanoparticles. SEM images of nanoparticles showed spherical shape and cell viability assay showed nontoxic behavior when tested on RPE cell line. Antibacterial analysis revealed a zone of inhibition of 31.5 ± 0.5 mm for MXF, while NXM3 exhibited an expanded zone of 35.5 ± 0.4 mm (p < 0.001). In conclusion, thiolation of XGN improves its bioadhesion, permeation, ocular-retention and pharmacokinetics of MXF.

2.
Pharmaceutics ; 16(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38399224

RESUMEN

Flurbiprofen (FBP), a nonsteroidal anti-inflammatory drug (NSAID), is commonly used to treat the pain of rheumatoid arthritis, but in prolonged use it causes gastric irritation and ulcer. To avoid these adverse events of NSAIDs, the simultaneous administration of H2 receptor antagonists such as ranitidine hydrochloride (RHCl) is obligatory. Here, we developed composite oral fast-disintegrating films (ODFs) containing FBP along with RHCl to provide a gastroprotective effect as well as to enhance the solubility and bioavailability of FBP. The ternary solid dispersion (TSD) of FBP was fabricated with Syloid® 244FP and poloxamer® 188 using the solvent evaporation technique. The synthesized FBP-TSD (coded as TSD) was loaded alone (S1) and in combination with plain RHCl (S2) in the composite ODFs based on hydroxypropyl methyl cellulose E5 (HPMC E5). The synthesized composite ODFs were evaluated by in vitro (thickness, folding endurance, tensile strength, disintegration, SEM, FTIR, XRD and release study) and in vivo (analgesic, anti-inflammatory activity, pro-inflammatory cytokines and gastroprotective assay) studies. The in vitro characterization revealed that TSD preserved its integrity and was effectively loaded in S1 and S2 with optimal compatibility. The films were durable and flexible with a disintegration time ≈15 s. The release profile at pH 6.8 showed that the solid dispersion of FBP improved the drug solubility and release when compared with pure FBP. After in vitro studies, it was observed that the analgesic and anti-inflammatory activity of S2 was higher than that of pure FBP and other synthesized formulations (TSD and S1). Similarly, the level of cytokines (TNF-α and IL-6) was also markedly reduced by S2. Furthermore, a gastroprotective assay confirmed that S2 has a higher safety profile in comparison to pure FBP and other synthesized formulations (TSD and S1). Thus, composite ODF (S2) can effectively enhance the FBP solubility and its therapeutic efficacy, along with its gastroprotective effect.

3.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446893

RESUMEN

The current study focused on the fabrication of a well-designed, biocompatible, physically stable, non-irritating and highly porous gelatin scaffold loaded with controlled-release triamcinolone acetonide (TA) and econazole nitrate (EN) co-loaded into mesoporous silica nanoparticles (EN-TA-loaded MSNs) to provide a better long-lasting antifungal therapeutic effect with minimal unfavorable effects. Optimization of the MSNs-loaded scaffold was performed using central composite rotatable design (CCRD), where the effect of gelatin concentration (X1), plasticizer (X2) and freezing time (X3) on the entrapment of EN (Y1) and TA (Y2) and on the release of EN (Y3) and TA (Y4) from the scaffold were studied. The significant compatibility of all formulation ingredients with both drugs was established from XRD, DSC and FT-IR spectra analyses while SEM and zeta studies represented a very precise unvarying distribution of the loaded MSNs in the porous structure of the scaffold. The stability of the optimized scaffold was confirmed from zeta potential analysis (-16.20 mV), and it exhibited higher entrapment efficiency (94%) and the slower (34%) release of both drugs. During in vitro and in vivo antifungal studies against Candida albicans, the MSNs-loaded scaffold was comparatively superior in the eradication of fungal infections as a greater zone of inhibition was observed for the optimized scaffold (16.91 mm) as compared to the pure drugs suspension (14.10 mm). Similarly, the MSNs-loaded scaffold showed a decreased cytotoxicity because the cell survival rate in the scaffold presence was 89% while the cell survival rate was 85% in the case of the pure drugs, and the MSNs-loaded scaffold did not indicate any grade of erythema on the skin in comparison to the pure medicinal agents. Conclusively, the scaffold-loaded nanoparticles containing the combined therapy appear to possess a strong prospective for enhancing patients' adherence and therapy tolerance by yielding improved synergistic antifungal efficacy at a low dose with abridged toxicity and augmented wound-healing impact.


Asunto(s)
Antifúngicos , Nanopartículas , Humanos , Antifúngicos/farmacología , Gelatina , Preparaciones de Acción Retardada/farmacología , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Estudios Prospectivos , Nanopartículas/química , Portadores de Fármacos/química
4.
Front Chem ; 10: 836678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592306

RESUMEN

Co-encapsulated econazole nitrate-triamcinolone acetonide loaded biocompatible, physically stable, and non-irritating mesoporous silica nanoparticles (EN-TA-loaded MSNs) were prepared and optimized by using a central composite rotatable design (CCRD) for providing better therapeutic efficacy against commonly prevailed resistant fungal infections. These drugs loaded MSNs can significantly overcome the deficiencies and problems like short duration of action, requirement of frequent administration, erythema, and burning sensation and irritation associated with conventional drug delivery systems. The stability of optimized drugs loaded MSNs prepared with 100 gm of oil at pH 5.6 with a stirring time of 2 h was confirmed from a zeta potential value of -25 mV. The remarkable compatibility of formulation ingredients was depicted by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) spectra while scanning electron microscopy (SEM) and size analysis represented a very fine size distribution of nanoparticles ranging from 450-600 nm. The CCRD clearly predicted that the optimized parameters of drugs loaded MSNs have better values of percentage yield (85%), EN release (68%), and TA release (70%). Compared to pure drugs, the decreased cytotoxicity of EN-TA-loaded MSNs was quite evident because they showed a cell survival rate of 90%, while in the case of pure drugs, the survival rate was 85%. During in vivo antifungal testing against Candida albicans performed on three different groups, each consisting of six rabbits, the EN-TA-loaded MSNs were relatively superior in eradicating the fungal infection as a single animal exhibited a positive culture test. Rapid recovery of fungal infection and a better therapeutic effect of EN-TA-loaded MSN were quite evident in wound healing and histopathology studies. Likewise, on the 14th day, a larger inhibitory zone was measured for optimized nanoparticles (15.90 mm) compared to the suspension of pure drugs (13.90 mm). In skin irritation studies, MSNs did not show a grade of erythema compared to pure drugs, which showed a four-fold grade of erythema. As a result, MSNs loaded with combination therapy seem to have the potential of improving patient compliance and tolerability by providing enhanced synergistic antifungal effectiveness at a reduced dose with accelerated wound healing and reduced toxicity of therapeutics.

5.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458733

RESUMEN

In the current study, nitrofurazone- (NFZ) and lidocaine-loaded (LD) silica microspheres were fabricated to address pathological indications of skin infections. The microspheres were prepared by the sol-gel method applying the Box-Behnken design and evaluated for size distribution, morphology, zeta potential, physico-chemical compatibility, XRD, thermogravimetric analysis, antibacterial and cytotoxicity activities. The comparative in vitro drug release study of microspheres revealed a 30% release of NFZ and 33% of LD after 8 h. The microspheres showed 81% percentage yield (PY) and 71.9% entrapment efficiency. XRD patterns confirmed the entrapment of NFZ-LD in silica microspheres with a significant reduction in crystallinity of the drugs. Thermal and FTIR studies proved the absence of any profound interactions of the formulation ingredients. The smooth spherical microspheres had a -28 mV zeta potential and a 10-100 µm size distribution. In vitro antibacterial activities of the NFZ-LD microspheres showed an increased zone of inhibition compared to pure drug suspensions. The in vivo efficacy tested on rabbits showed a comparatively rapid wound healing with complete lack of skin irritation impact. The cytotoxicity studies revealed more acceptability of silica microspheres with negligible harm to cells. The study suggests that the NFZ- and LD-loaded silica microspheres would be an ideal system for accelerating and promoting rapid healing of various acute and chronic wounds.


Asunto(s)
Nitrofurazona , Dióxido de Silicio , Animales , Antibacterianos/farmacología , Lidocaína/farmacología , Microesferas , Nitrofurazona/farmacología , Tamaño de la Partícula , Conejos , Cicatrización de Heridas
6.
Pharmaceutics ; 14(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35335860

RESUMEN

The purpose of the study was to develop an SNEDDS to improve the solubility and bioavailability of pitavastatin. The solubility of pitavastatin in different oils, surfactants, and co-surfactants was determined and a pseudo-ternary phase diagram was constructed. The SNEDDS was characterized by zeta-sizer, zeta-potential, FTIR, DSC, and TGA. Release and permeation of pitavastatin from the SNEDDS was studied for 12 and 24 h, respectively. The lipolysis test, RBC lysis, effect on lipid profile, and pharmacokinetics were studied. The SPC3 formulation showed a 104 ± 1.50 nm particle size, a 0.198 polydispersity index (PDI), and a -29 zeta potential. FTIR, DSC, and TGA showed the chemical compatibility and thermal stability. The release and permeation of pitavastatin from SPC3 was 88.5 ± 2.5% and 96%, respectively. In the lipolysis test, the digestion of SPC3 yielded a high amount of pitavastatin and showed little RBC lysis. The lipid profile suggested that after 35 days of administration of the SNEDDS, there was a marked decrease in TC, LDL, and triglyceride levels. The SNEDDS of SPC3 showed an 86% viability of Caco-2 cells. Pharmacokinetics of SPC3 showed improved values of Cmax, Tmax, half-life, MRT, AUC, and AUMC compared to the reference formulation. Our study demonstrated that the SNEDDS effectively enhanced the solubility and bioavailability of a BCS class II drug.

7.
Front Bioeng Biotechnol ; 10: 1057627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588944

RESUMEN

The purpose of the study was to devise the superporous hydrogels (SPHs) of mefenamic acid (MA) to acquire the sustained action of the MA in the body. The superporous hydrogels of mefenamic acid were formulated by employing the gas blowing method. The central composite rotatable design (CCRD) was applied to optimize the effect of independent formulation factors like acrylic acid (AC), HPMC and glycerol (GLY) over dependent variables like porosity, viscosity, drug content and swelling ratio of superporous hydrogels in water, phosphate buffer (pH 6.8) and in 0.1N HCl (pH 1.2). A number of characteristics such as void fraction, surface morphology by Scanning electron microscopy (SEM) and in vitro drug release study were governed along with physico-chemical analysis by Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and appraised statistically by employing the ANOVA. The comparative analgesic activity of optimized superporous hydrogel formulation SPH17 was also analyzed by using tail flick method. The Fourier transform infrared spectroscopy and Differential scanning calorimetry studies approved the physical compatibility between the polymers and the drug. The Scanning electron microscopy study specified micrographic insight about the structure of formed formulations comprising presence of pores, fibers and drug-hole aggregates. The superporous hydrogels were detected to be low dense as they expressed density lower than 0.75 g/cc. The decrease in concentration of the polymers and cross linker contributed towards the increase in the void fraction of the superporous hydrogel formulations. The optimized formulation SPH 17 exhibited a highly sustained release of MA for up to 10 h in the both 0.1 N HCl and phosphate buffer (66.6%) media. The non-fickian release of drug revealed the coupling of the diffusion and polymer relaxation mechanism of the drug release from the formulations. The obtained outcomes suggested that analgesic effect of SPH 17 was significantly (p < 0.05) higher than that of simple suspension of mefenamic acid and total analgesic effect duration for superporous hydrogel was also doubled as compared to the duration of analgesic effect produced by drug suspension. The successfully formulated SPH with HPMC K100M as a gelling agent had sustained the action of the mefenamic acid (MF) by improving its poor solubility and permeability. The introduction of inter-penetrating polymeric network (acrylic acid) using glycerol as a cross linker impart increased residence time to superporous hydrogels which ultimately enhanced the feasibility of using superporous hydrogel as oral sustained release devices particularly for gastric retention.

8.
Biomed Res Int ; 2021: 3849093, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722762

RESUMEN

The development and optimization of controlled release lipospheres (LS) from safe biocompatible behenic acid (BA) was performed for not only enhancing patient's compliance against highly prevailed chronic diabetes but also to vanquish the insufficiencies of traditional methods of drug delivery. The Box-Bhenken design (BBD) was utilized to statistically investigate the impact of formulation variables on percentage yield (Y 1), entrapment efficiency (Y 2), and SG-release (Y 3) from saxagliptin- (SG-) loaded LS, and the chosen optimized LS were subjected to a comparative in vivo pharmacokinetic analysis against commercially available SG brand. The compatibility analysis performed by DSC and FTIR established a complete lack of interaction of formulation components with SG, while p-XRD suggested a mild transformation of crystalline drug to its amorphous form during encapsulation process. The spherical, free flowing smooth surface LS having zeta potential of -32 mV and size range of 11-20 µm were conveniently formulated. The obtained data for Y 1 (30-80%), Y 2 (30-70%), and Y 3 (40-90%) showed a best fit with quadratic model. The pharmacokinetics analysis of LS showed a significantly decreased C max of SG (75.63 ± 3.85) with a sufficiently elevated T max (10.53 h) as compared to commercial brand of SG (99.66 ± 2.97 ng/mL and 3.55 ± 2.18 h). The achievement of greater bioavailability of SG was most probably attributed to higher level of half-life, mean residence time (MRT), and AUC0-24 for SG released from LS. Conclusively, the novel approach of SG-loaded LS had successfully sustained the plasma SG level for a prolonged time without increasing C max which would ultimately bring an effective management of chronic diabetes.


Asunto(s)
Adamantano/análogos & derivados , Dipéptidos/administración & dosificación , Liposomas/farmacocinética , Adamantano/administración & dosificación , Adamantano/farmacocinética , Adamantano/farmacología , Administración Oral , Adulto , Disponibilidad Biológica , Preparaciones de Acción Retardada/farmacocinética , Dipéptidos/farmacocinética , Dipéptidos/farmacología , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/fisiología , Ácidos Grasos/farmacocinética , Ácidos Grasos/farmacología , Semivida , Voluntarios Sanos , Humanos , Liposomas/farmacología , Masculino , Modelos Estadísticos , Solubilidad
9.
Pak J Pharm Sci ; 34(1(Supplementary)): 367-372, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34275863

RESUMEN

Carissa opaca (C.O) is a wild shrub, belonging to the family Apocynaceae. The medicinal virtues of this plant have long been known. The present study demonstrates the effects of aqueous-methanolic extract and various fractions (n-butanolic and aqueous) of Carissa opaca on cardiovascular parameters. The perfusion pressure (PP), force of contraction (FC) and heart rate (HR) were assessed on isolated heart of rabbit using Langendroff's technique for crude extract and fractions of C.O, followed by the elucidation of the mechanism of action after estimating toxicity of the plant. Negative ionotropic and positive chronotropic effects, with an increase in PP in isolated perfused rabbit heart were observed the with plant extract and fractions. The aqueous-methanolic extract exhibited maximum response at 1mg/ml while the n-butanolic and aqueous fractions showed a maximum response at 1mg/ml and 10µg/ml respectively. Both fractions produced the same response when treated with atropine (10-5 M), however the actions of adrenaline (10-5 M) and calcium chloride (10-5 M) remained unblocked. Acute toxicity studies indicated that the plant was safe up to 2000 mg/kg and sub-chronic studies demonstrated that no significant change in haematological and biochemical parameters observed. In conclusion, this study supports the folkloric claim of C.O extract.


Asunto(s)
Apocynaceae , Frecuencia Cardíaca/efectos de los fármacos , Corazón/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Cardiotónicos/farmacología , Preparación de Corazón Aislado , Conejos
10.
ACS Omega ; 6(12): 8210-8225, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33817480

RESUMEN

The current research aimed at designing mesoporous silica nanoparticles (MSNs) for a controlled coadministration of salicylic acid (SA) and ketoconazole (KCZ) to effectively treat highly resistant fungal infections. The sol-gel method was used to formulate MSNs, which were further optimized using central composite rotatable design (CCRD) by investigating mathematical impact of independent formulation variables such as pH, stirring time, and stirring speed on dependent variables entrapment efficiency (EE) and drug release. The selected optimized MSNs and pure drugs were subjected to comparative in vitro/in vivo antifungal studies, skin irritation, cytotoxicity, and histopathological evaluations. The obtained negatively charged (-23.1), free flowing spherical, highly porous structured MSNs having a size distribution of 300-500 nm were suggestive of high storage stability and improved cell proliferation due to enhanced oxygen supply to cells. The physico-chemical evaluation of SA/KCZ-loaded MSNs performed through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) indicates absolute lack of any interaction between formulation components and successful encapsulation of both drugs in MSNs. The EESA, EEKCZ, SA release, and KCZ release varied significantly from 34 to 89%, 36 to 85%, 39 to 88%, and 43 to 90%, respectively, indicating the quadratic impact of formulation variables on obtained MSNs. For MSNs, the skin tolerability and cell viability percentage rate were also having an extraordinary advantage over suspension of pure drugs. The optimized SA/KCZ-loaded MSNs demonstrated comparatively enhanced in vitro/in vivo antifungal activities and rapid wound healing efficacy in histopathological evaluation without any skin irritation impact, suggesting the MSNs potential for the simultaneous codelivery of antifungal and keratolyic agents in sustained release fashion.

11.
Int J Nanomedicine ; 15: 4847-4858, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764922

RESUMEN

BACKGROUND: Bisphosphonates have very low bioavailability and cause irritation of the esophagus and stomach. This study was planned to improve the oral bioavailability of ibandronate through the formation of a raft in the stomach. Bisphosphonate-induced irritation of the esophagus and stomach is prevented by the formation of a raft. MATERIALS AND METHODS: The nanostructured raft was developed through the use of nanosized citrus pectin (NCP). The particle size of NCP was measured by zeta sizer and SEM. The percentage of NCP and the neutralization profile of raft was studied. The ibandronate, polymers, and the developed formulation were characterized by FTIR, XRD, TGA, and DSC. The release of ibandronate was studied in 0.1 N HCl, 0.5 N HCl, 1 N HCl, and simulated gastric fluid (SGF) and a cell viability study was performed using Caco-2 cells. The PPR5 formulation and Bonish 150 mg tablets were selected as test and reference formulations, respectively, for pharmacokinetic study. Twelve healthy albino rats were taken and divided into two groups using a Latin square crossover design, and the blood samples were collected for 24 hours. RESULTS: The SEM image showed that the particle size of NCP was 159 nm. The raft of PPR5 showed 94% NCP and 45 minutes duration of neutralization. The FTIR and XRD showed chemical stability and a uniform distribution of ibandronate in the raft. The TGA and DSC indicated the thermal stability of formulation. The release of 99.87% ibandronate at 20 minutes was observed in the SGF. The values of C max for the reference and test formulations were 493±0.237 ng/mL and 653±0.097 ng/mL, respectively. The AUC(0-t) of the reference and test formulations was 3708.25±3.418 ng/mL.h and 6899.25±3.467 ng/mL.h, respectively. CONCLUSION: The NCP has been successfully prepared from citrus pectin and has shown effective porous raft formation. The bioavailability of the ibandronate from newly developed PPR5 was higher than the already marketed formulation.


Asunto(s)
Portadores de Fármacos/química , Mucosa Gástrica/metabolismo , Ácido Ibandrónico/farmacología , Ácido Ibandrónico/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Células CACO-2 , Humanos , Ácido Ibandrónico/administración & dosificación , Masculino , Pectinas/química , Ratas
12.
AAPS PharmSciTech ; 21(5): 188, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32651896

RESUMEN

The current study aims at formulating and optimizing lipospheres (LS) by the Box-Behnken design (BBD) from safe biodegradable carnauba wax (CW) to co-administer saxagliptin (SG) and enalapril (EP) for co-existing chronic hypertensive diabetes in order to overcome inadequacies of conventional modes of drug administration. Optimized liposphere formulation (OLF) was selected by a numerical optimization procedure and a comparative in vivo pharmacokinetic study of OLF and commercial brands was also performed. Discrete, free-flowing, spherical, smooth-surface LS having a size range of 5-10 µm and zeta potential of - 20 to - 30 mV were successfully formulated. Compatibility studies by FTIR and DSC proved the lack of interaction of components while XRD suggested the transformation of crystalline drugs to amorphous form. Outcomes of dependent optimizing variables like percentage yield (30-90%), EP-release (32-92%), and SG-release (28-95%) followed a polynomial quadratic model. Pharmacokinetics studies indicated a significantly lower Cmax of EP (125.22 ± 6.32) and SG (75.63 ± 3.85) and higher mean Tmax values (9.4 h for EP and 10.73 h for SG) from OLF in comparison with reference brands of EP (257.54 ± 8.23 ng/mL) and SG (393.66 ± 2.97 ng/mL). Additionally, a potential rise in half-life and MRT of SG and EP was achieved reaching approximately 2- to 3-fold higher than noted for reference brands. Importantly, the enhanced Tmax and AUC0-24 specified the achievement of enhanced bioavailability of both drugs from LS. Consequently, such an innovative approach could not only control drug release in both in vitro and in vivo analyses but also maintain plasma drug concentration for a longer time without maximizing Cmax leading towards effective management of chronic illnesses.


Asunto(s)
Adamantano/análogos & derivados , Dipéptidos/farmacocinética , Enalapril/farmacocinética , Adamantano/administración & dosificación , Adamantano/farmacocinética , Administración Oral , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacocinética , Disponibilidad Biológica , Preparaciones de Acción Retardada/química , Dipéptidos/administración & dosificación , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Inhibidores de la Dipeptidil-Peptidasa IV/farmacocinética , Liberación de Fármacos , Enalapril/administración & dosificación , Semivida , Humanos , Tamaño de la Partícula , Ceras/química
13.
PLoS One ; 15(4): e0231480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32275694

RESUMEN

Chronic Hepatitis C Virus (HCV) infection is still a major health issue especially in endemic areas where fewer direct-acting virals (DAAs) are treatment options. Some HCV variants are associated with resistance and it reduces DAAs success where pre-existing variants prevail. In this study, we investigated resistance-associated polymorphisms (RAPs) in the HCV NS3 region from DAAs naïve Pakistani patients. 277 chronic HCV treatment naïve patients infected with genotype 1a, 3a and 3b were selected from various clinical centers in the capital city of Khyber Pakhtunkhwa province Pakistan. All the patients were included in this study after taking informed consent. HCV NS3 region was amplified and Sanger sequencing was performed to analyze RAPs to NS3 protease inhibitors. Of the total 29.24% (81/277) patients had detected with known RAPs viz V36A/G/L, T54S, V55A/D/I, Q80K/R, S122G/T/R, R155K/T/I, V158I, D168T/Q, and I170V. Among HCV-1a subjects overall RAPs found were 26.09% (12/46) and most prevalent substitutions were V36A/G (10.87%, 5/46) and R155K/T/I (8.70%, 4/46). Of the total HCV-3a infected patients, 30.95% were observed with RAPS. Ammon these, the most frequent substitutions were Q80R (13.69%, 23/168) followed by V36L (18.33%, 14/168) and V55I (5.95%, 10/168). Among HCV-3b patients, 26.98% were found with RAPs and S122R and Q80R were the dominant variants detected in 17.46 (11/63) and 12.70% (8/63) patients respectively. All these substitutions were associated with Boceprevir, Simeprevir, Telaprevir, and Paritaprevir. Single substitution in one sequence was found in 18.77% (52/277) and multiple in 10.46% (29/277). More than one RAP was frequent in HCV-3a sequences. Natural RAPs are common in chronic HCV patients infected with genotype 1a, 3a and 3b, the most prevalent subtypes in Pakistan. High prevalence of HCV NS3 RAPs suggested a large scale study of the NS3 gene before the introduction of NS3 protease inhibitors in Pakistan.


Asunto(s)
Farmacorresistencia Viral/genética , Hepacivirus/genética , Hepatitis C Crónica/virología , Polimorfismo Genético/genética , Proteínas no Estructurales Virales/genética , Adulto , Antivirales/uso terapéutico , Farmacorresistencia Viral/efectos de los fármacos , Femenino , Genotipo , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Pakistán , Análisis de Secuencia de ADN
14.
Pak J Pharm Sci ; 33(4(Supplementary)): 1755-1761, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33612458

RESUMEN

The current study is an attempt to explore the effect of varying quantities of hydroxypropyl cellulose (HPC) polymer on carbamazepine (CBZ) cocrystal formation with dicarboxylic acid coformers i.e., malonic acid (MA), succinic acid (SA), glutaric acid (GA), and adipic acid (AA). The cocrystals were first prepared without polymer by slurry crystallization method and then tried with different quantities of the polymer. The prepared samples were characterized by Powder X-ray Diffraction (XRPD). The characterization results indicate that in methanol pure carbamazepine-malonic (CBZ-MA) and carbamazepine-adipic acid (CBZ-AA) cocrystal can be prepared, while in ethanol and acetone pure carbamazepine-succinic (CBZ-SA) and carbamazepine-glutaric acid (CBZ-GA) cocrystals can be obtained respectively. The same cocrystals were tried using HPC polymer in three different quantities. The characterization results showed that a higher quantity of HPC polymer transforms CBZ-MA cocrystal polymorph-I to polymorph-II. The CBZ-SA and CBZ-GA cocrystal formation somehow inhibited as the concentration of HPC polymer increases. But on the other side, the formation of CBZ-AA cocrystal utterly not inhibited in the presence of varying quantities of HPC polymer. Furthermore, 11 different quantities of HPC were tried to know about the inhibitory concentration of HPC on CBZ-AA cocrystal formation. The CBZ-AA cocrystal preparation was not inhibited even at higher quantities of HPC compared to the coformer. Additionally, the effect of three different quantities of HPC on the thermal stability of the CBZ-AA cocrystal was investigated. Moreover, the stability of pure CBZ at 92% relative humidity (RH) condition was compared to CBZ-AA cocrystal with and without HPC polymer. The CBZ-AA cocrystal with and without HPC polymer was more stable than pure CBZ.


Asunto(s)
Carbamazepina/química , Ácidos Carboxílicos/química , Polímeros/química , Rastreo Diferencial de Calorimetría/métodos , Cristalización/métodos , Glutaratos/química , Malonatos/química , Polvos/química , Solubilidad/efectos de los fármacos , Difracción de Rayos X/métodos
15.
Pak J Pharm Sci ; 30(5): 1557-1565, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29084673

RESUMEN

Objective of present study was to enhance patient compliance in pediatrics and geriatrics patients of Hypertension. To achieve this target, innovative orodispersible tablets of atenolol and atorvastatin was developed to produce instant action by rapidly disintegrating into oral cavity. Three different techniques like direct compression, effervescent and sublimation methods were used to prepare these tablets (Five batches of tablets by each method) by using two superdisintegrants like Sodium starch glycolate and pregelatinized starch alone and in combination. Pre-formulation studies including rheological analysis (Bulk density, tapped density, Angle of repose, Carr's compressibility index, Hausner's ratio), compatibility studies such as Fourier transform infrared spectrophotometry (FTIR) and Differential scanning colorimetry (DSC), Post-compression and stability studies were also performed. Finally, results were statistically evaluated by the applying one way ANOVA test and mean. It was concluded that the formulation F8 containing Sodium starch glycolate 2% and pregelatinized starch 6% found best regarding disintegration time, wetting volume, wetting time, release studies etc. The order in which drug release was quicker is Pregelatinized starch plus Sodium starch glycolate > Pregelatinized starch > Sodium starch glycolate (primojel). It was concluded that sublimation method was the best among three methods used for orodispersible tablets formulations.


Asunto(s)
Antihipertensivos/química , Atenolol/química , Atorvastatina/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/química , Administración Oral , Antihipertensivos/administración & dosificación , Atenolol/administración & dosificación , Atorvastatina/administración & dosificación , Rastreo Diferencial de Calorimetría , Combinación de Medicamentos , Composición de Medicamentos , Liberación de Fármacos , Excipientes/química , Gelatina/química , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Cinética , Reología , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/análogos & derivados , Almidón/química , Sublimación Química , Comprimidos , Tecnología Farmacéutica/métodos
16.
Acta Pharm ; 67(4): 441-461, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29337670

RESUMEN

For preparing nebivolol loaded solid lipid microparticles (SLMs) by the solvent evaporation microencapsulation process from carnauba wax and glyceryl monostearate, central composite design was used to study the impact of independent variables on yield (Y1), entrapment efficiency (Y2) and drug release (Y3). SLMs having a 10-40 µm size range, with good rheological behavior and spherical smooth surfaces, were produced. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry pointed to compatibility between formulation components and the zeta-potential study confirmed better stability due to the presence of negative charge (-20 to -40 mV). The obtained outcomes for Y1 (29-86 %), Y2 (45-83 %) and Y3 (49-86 %) were analyzed by polynomial equations and the suggested quadratic model were validated. Nebivolol release from SLMs at pH 1.2 and 6.8 was significantly (p < 0.05) affected by lipid concentration. The release mechanism followed Higuchi and zero order models, while n > 0.85 value (Korsmeyer- Peppas) suggested slow erosion along with diffusion. The optimized SLMs have the potential to improve nebivolol oral bioavailability.


Asunto(s)
Preparaciones de Acción Retardada/química , Composición de Medicamentos/métodos , Glicéridos/química , Ceras/química , Calorimetría/métodos , Portadores de Fármacos/química , Nebivolol/farmacocinética , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos X
17.
Acta Pol Pharm ; 74(1): 211-226, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29474777

RESUMEN

The current research focused on improvement of oral bioavailability and decrease in dosing frequency of ivabradine (Iva) in order to enhance patient compliance by formulating novel sustained release Iva loaded solid lipid microparticles (SLMs) with the help of melt emulsification technique. SLMs formulations were designed with the help of three level central composite rotatable design (CCRD) to study the impact of independent variables like lipid concentration, surfactant concentration and stirring speed on responses - percentage yield (Y,) and entrapment efficiency (Y2). Compatibility between the drug and bees wax (BW) was checked by conducting Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). SLMs were further evaluated for rheological behavior, zeta potential, particle size and for morphology by scanning'electron microscope (SEM). The release of drug from SLMs was conducted by USP type-Il apparatus at pH 1.2, pH 6.8 and data were analyzed by different kinetic models like zero order, first order, Higuchi model, Korsmeyer-Peppas and Hixon-Crowell models. The rheo- logical studies approved the good flow behavior of SLMs and spherical smooth surface of SLMs was observed from SEM. DSC, FTIR and XRD studies concluded the lack of any possible interaction between formulation components. The size-of SLMs ranged from 300 to 500 pm and zeta potential study showed the presence of higher negative charge (-30 to -52 mV). Response Y, varied from 53 to 90% and response Y2 ranged from 29 to 78% indicating the effect of formulation variables. The obtained outcomes were analyzed by second order polynomial equation and suggested quadratic model was also validated. SLMs released Iva from 54 to 90% at pH 6.8 and was significantly (p 0.05) affected by BW concentration. The release mechanism followed the zero order and Korsmeyer-Peppas (n 0.85) kinetic models suggesting slow erosion along with diffusion mechanism for Iva release.


Asunto(s)
Benzazepinas/administración & dosificación , Rastreo Diferencial de Calorimetría , Preparaciones de Acción Retardada , Liberación de Fármacos , Emulsiones , Ivabradina , Lípidos/química , Tamaño de la Partícula , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
18.
Acta Pol Pharm ; 73(2): 425-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27180435

RESUMEN

The present investigation was carried out to evaluate the effect of aerial parts of Sonchus asper L. in normotensive, glucose and egg feed diet induced hypertensive rats. Aqueous-methanolic extract of Sonchus asper in 250, 500 and 1000 mg/kg doses was studied in normotensive and glucose induced hypertensive rats using the non-invasive technique. The results obtained showed that the extract has significantly (p < 0.5 - p < 0.001) decreased the blood pressure and heart rate in dose dependent manner. The dose 1000 mg/kg of the extract produced the maximum antihypertensive effect and was selected for further experiments. The extract was found to prevent the rise in blood pressure of egg and glucose fed rats as compared to control group in 21 days study. The LD50 of the plant extract was 3500 mg/kg b.w. in mice and sub-chronic toxicity study showed that there was no significant alteration in the blood chemistry of the extract treated rats. It is conceivable, therefore, that the aqueous-methanolic extract of Sonchus asper has exerted considerable antihypertensive activity in rats and has duly supported traditional medicinal use of plant in hypertension.


Asunto(s)
Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Extractos Vegetales/farmacología , Sonchus , Animales , Antihipertensivos/aislamiento & purificación , Antihipertensivos/toxicidad , Dieta , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/etiología , Hipertensión/fisiopatología , Dosificación Letal Mediana , Metanol/química , Ratones , Fitoterapia , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Plantas Medicinales , Ratas Sprague-Dawley , Solventes/química , Sonchus/química
19.
Acta Pol Pharm ; 72(1): 113-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25850206

RESUMEN

The present study was conducted to evaluate the analgesic, anti-inflammatory and antipyretic activities of Thymus serphyllum Linn. in mice. Anti-inflammatory activity was evaluated by carrageenan and egg albumin induced paw edema in mice, while analgesic activity was assessed using formalin induced paw licking and acetic acid induced abdominal writhing in mice. For determination of antipyretic activity, pyrexia was induced by subcutaneous injection of 20% yeast. All the extracts produced significant anti-inflammatory effect however, ether extract produced maximum effect 34% inhibition (p < 0.001) against carrageenan and 22% (p < 0.01) inhibition against egg albumin induced paw edema in mice at the end of 3 h. Ether extract produced prominent analgesic effect 77% (p < 0.001) inhibition in acetic acid induced abdominal writhing and 59% inhibition in formalin induced paw licking model in mice, respectively. Ether extract also demonstrated significant (p < 0.001) antipyretic activity against yeast induced pyrexia. The plant showed no sign of toxicity up to the dose of 2000 mg/kg in mice. This study supports the use of Thymus serphyllum in traditional medicine for inflammation accompanied by pain and fever.


Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Antipiréticos/farmacología , Extractos Vegetales/farmacología , Thymus (Planta)/química , Animales , Femenino , Fiebre/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Ratones , Dolor/tratamiento farmacológico
20.
Pak J Pharm Sci ; 28(2): 437-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25730779

RESUMEN

The cardiovascular activity of aqueous methanolic extract of Paspalidium flavidum L. was evaluated on isolated rabbit heart and aorta. Heart rates, force of contraction and perfusion pressure were assessed in the presence of different concentrations of extract and adrenaline by using Langendorff's technique. Moreover, the vasoconstriction effects were studied in rabbit aorta using isolated organ bath. The results indicated that the extract (1ng-100 µ g/ml) exhibited a significant increase in heart rate, contractility and perfusion pressure of isolated rabbit's heart; with a maximum effect at 1ng/ml, which was comparable to adrenaline (1 µ g/ml). Similarly, adrenaline at doses from 1-10 µ g/ml produced a significant dose dependant increase in all the cardiac parameters. The cardiotonic effects of the extract were significantly blocked by propranolol (10(-5)M) while an increase in perfusion pressure was completely antagonized by verapamil (10(-6)M). Activity of cardiac marker enzymes was also significantly raised in the perfusate of isolated heart pretreated with the extract. In rabbit aorta, the extract exhibited a dose dependent vasoconstriction effect however it did not increase the tone of aorta when pre-treated with verapamil (10(-6)M). It is conceivable therefore; that the cardiotonic and vasoconstriction effects of the extract might be due to its agonistic actions on ß-receptors and Ca(+2) channels.


Asunto(s)
Cardiotónicos/farmacología , Extractos Vegetales/farmacología , Poaceae , Vasoconstrictores/farmacología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...