Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566051

RESUMEN

Photo-thermal catalysis has recently emerged as a viable strategy to produce solar fuels or chemicals using sunlight. In particular, nanostructures featuring localized surface plasmon resonance (LSPR) hold great promise as photo-thermal catalysts given their ability to convert light into heat. In this regard, traditional plasmonic materials include gold (Au) or silver (Ag), but in the last years, transition metal nitrides have been proposed as a cost-efficient alternative. Herein, we demonstrate that titanium nitride (TiN) tubes derived from the nitridation of TiO2 precursor display excellent light absorption properties thanks to their intense LSPR band in the visible-IR regions. Upon deposition of Ru nanoparticles (NPs), Ru-TiN tubes exhibit high activity towards the photo-thermal CO2 reduction reaction, achieving remarkable methane (CH4) production rates up to 1200 mmol g-1 h-1. Mechanistic studies suggest that the reaction pathway is dominated by thermal effects thanks to the effective light-to-heat conversion of Ru-TiN tubes. This work will serve as a basis for future research on new plasmonic structures for photo-thermal applications in catalysis.

2.
Angew Chem Int Ed Engl ; 60(51): 26476-26482, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34648675

RESUMEN

We report the synthesis of a highly active and stable metal-organic framework derived Ni-based catalyst for the photothermal reduction of CO2 to CH4 . Through the controlled pyrolysis of MOF-74 (Ni), the nature of the carbonaceous species and therefore photothermal performance can be tuned. CH4 production rates of 488 mmol g-1 h-1 under UV-visible-IR irradiation are achieved when the catalyst is prepared under optimized conditions. No particle aggregation or significant loss of activity were observed after ten consecutive reaction cycles or more than 12 hours under continuous flow configuration. Finally, as a proof-of-concept, we performed an outdoor experiment under ambient solar irradiation, demonstrating the potential of our catalyst to reduce CO2 to CH4 using only solar energy.

3.
Chem Rev ; 120(16): 8468-8535, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32223183

RESUMEN

More than 95% (in volume) of all of today's chemical products are manufactured through catalytic processes, making research into more efficient catalytic materials a thrilling and very dynamic research field. In this regard, metal-organic frameworks (MOFs) offer great opportunities for the rational design of new catalytic solids, as highlighted by the unprecedented number of publications appearing over the past decade. In this review, the recent advances in the application of MOFs in heterogeneous catalysis are discussed. MOFs with intrinsic thermocatalytic activity, as hosts for the incorporation of metal nanoparticles, as precursors for the manufacture of composite catalysts and those active in photo- and electrocatalytic processes are critically reviewed. The review is wrapped up with our personal view on future research directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA