Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ Comput Sci ; 10: e2171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145253

RESUMEN

Background: Cancer remains one of the leading causes of mortality globally, with conventional chemotherapy often resulting in severe side effects and limited effectiveness. Recent advancements in bioinformatics and machine learning, particularly deep learning, offer promising new avenues for cancer treatment through the prediction and identification of anticancer peptides. Objective: This study aimed to develop and evaluate a deep learning model utilizing a two-dimensional convolutional neural network (2D CNN) to enhance the prediction accuracy of anticancer peptides, addressing the complexities and limitations of current prediction methods. Methods: A diverse dataset of peptide sequences with annotated anticancer activity labels was compiled from various public databases and experimental studies. The sequences were preprocessed and encoded using one-hot encoding and additional physicochemical properties. The 2D CNN model was trained and optimized using this dataset, with performance evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). Results: The proposed 2D CNN model achieved superior performance compared to existing methods, with an accuracy of 0.87, precision of 0.85, recall of 0.89, F1-score of 0.87, and an AUC-ROC value of 0.91. These results indicate the model's effectiveness in accurately predicting anticancer peptides and capturing intricate spatial patterns within peptide sequences. Conclusion: The findings demonstrate the potential of deep learning, specifically 2D CNNs, in advancing the prediction of anticancer peptides. The proposed model significantly improves prediction accuracy, offering a valuable tool for identifying effective peptide candidates for cancer treatment. Future Work: Further research should focus on expanding the dataset, exploring alternative deep learning architectures, and validating the model's predictions through experimental studies. Efforts should also aim at optimizing computational efficiency and translating these predictions into clinical applications.

2.
Front Genet ; 15: 1349546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974384

RESUMEN

Alternative splicing (AS) is a crucial process in genetic information processing that generates multiple mRNA molecules from a single gene, producing diverse proteins. Accurate prediction of AS events is essential for understanding various physiological aspects, including disease progression and prognosis. Machine learning (ML) techniques have been widely employed in bioinformatics to address this challenge. However, existing models have limitations in capturing AS events in the presence of mutations and achieving high prediction performance. To overcome these limitations, this research presents deep splicing code (DSC), a deep learning (DL)-based model for AS prediction. The proposed model aims to improve predictive ability by investigating state-of-the-art techniques in AS and developing a DL model specifically designed to predict AS events accurately. The performance of the DSC model is evaluated against existing techniques, revealing its potential to enhance the understanding and predictive power of DL algorithms in AS. It outperforms other models by achieving an average AUC score of 92%. The significance of this research lies in its contribution to identifying functional implications and potential therapeutic targets associated with AS, with applications in genomics, bioinformatics, and biomedical research. The findings of this study have the potential to advance the field and pave the way for more precise and reliable predictions of AS events, ultimately leading to a deeper understanding of genetic information processing and its impact on human physiology and disease.

3.
Sci Prog ; 107(3): 368504241266588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051530

RESUMEN

A crucial stage in eukaryote gene expression involves mRNA splicing by a protein assembly known as the spliceosome. This step significantly contributes to generating and properly operating the ultimate gene product. Since non-coding introns disrupt eukaryotic genes, splicing entails the elimination of introns and joining exons to create a functional mRNA molecule. Nevertheless, accurately finding splice sequence sites using various molecular biology techniques and other biological approaches is complex and time-consuming. This paper presents a precise and reliable computer-aided diagnosis (CAD) technique for the rapid and correct identification of splice site sequences. The proposed deep learning-based framework uses long short-term memory (LSTM) to extract distinct patterns from RNA sequences, enabling rapid and accurate point mutation sequence mapping. The proposed network employs one-hot encodings to find sequential patterns that effectively identify splicing sites. A thorough ablation study of traditional machine learning, one-dimensional convolutional neural networks (1D-CNNs), and recurrent neural networks (RNNs) models was conducted. The proposed LSTM network outperformed existing state-of-the-art approaches, improving accuracy by 3% and 2% for the acceptor and donor sites datasets.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Sitios de Empalme de ARN , Sitios de Empalme de ARN/genética , Humanos , Empalme del ARN , Intrones/genética , ARN Mensajero/genética , Algoritmos , Expresión Génica , Biología Computacional/métodos , Exones/genética
4.
Diagnostics (Basel) ; 13(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37685365

RESUMEN

Parkinson's disease (PD) is a chronic and progressive neurological disease that mostly shakes and compromises the motor system of the human brain. Patients with PD can face resting tremors, loss of balance, bradykinesia, and rigidity problems. Complex patterns of PD, i.e., with relevance to other neurological diseases and minor changes in brain structure, make the diagnosis of this disease a challenge and cause inaccuracy of about 25% in the diagnostics. The research community utilizes different machine learning techniques for diagnosis using handcrafted features. This paper proposes a computer-aided diagnostic system using a convolutional neural network (CNN) to diagnose PD. CNN is one of the most suitable models to extract and learn the essential features of a problem. The dataset is obtained from Parkinson's Progression Markers Initiative (PPMI), which provides different datasets (benchmarks), such as T2-weighted MRI for PD and other healthy controls (HC). The mid slices are collected from each MRI. Further, these slices are registered for alignment. Since the PD can be found in substantia nigra (i.e., the midbrain), the midbrain region of the registered T2-weighted MRI slice is selected using the freehand region of interest technique with a 33 × 33 sized window. Several experiments have been carried out to ensure the validity of the CNN. The standard measures, such as accuracy, sensitivity, specificity, and area under the curve, are used to evaluate the proposed system. The evaluation results show that CNN provides better accuracy than machine learning techniques, such as naive Bayes, decision tree, support vector machine, and artificial neural network.

5.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430624

RESUMEN

The problem of energy optimization for Internet of Things (IoT) devices is crucial for two reasons. Firstly, IoT devices powered by renewable energy sources have limited energy resources. Secondly, the aggregate energy requirement for these small and low-powered devices is translated into significant energy consumption. Existing works show that a significant portion of an IoT device's energy is consumed by the radio sub-system. With the emerging sixth generation (6G), energy efficiency is a major design criterion for significantly increasing the IoT network's performance. To solve this issue, this paper focuses on maximizing the energy efficiency of the radio sub-system. In wireless communications, the channel plays a major role in determining energy requirements. Therefore, a mixed-integer nonlinear programming problem is formulated to jointly optimize power allocation, sub-channel allocation, user selection, and the activated remote radio units (RRUs) in a combinatorial approach according to the channel conditions. Although it is an NP-hard problem, the optimization problem is solved through fractional programming properties, converting it into an equivalent tractable and parametric form. The resulting problem is then solved optimally by using the Lagrangian decomposition method and an improved Kuhn-Munkres algorithm. The results show that the proposed technique significantly improves the energy efficiency of IoT systems as compared to the state-of-the-art work.

6.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36772510

RESUMEN

The Internet of Medical Things (IoMT) has revolutionized Ambient Assisted Living (AAL) by interconnecting smart medical devices. These devices generate a large amount of data without human intervention. Learning-based sophisticated models are required to extract meaningful information from this massive surge of data. In this context, Deep Neural Network (DNN) has been proven to be a powerful tool for disease detection. Pulmonary Embolism (PE) is considered the leading cause of death disease, with a death toll of 180,000 per year in the US alone. It appears due to a blood clot in pulmonary arteries, which blocks the blood supply to the lungs or a part of the lung. An early diagnosis and treatment of PE could reduce the mortality rate. Doctors and radiologists prefer Computed Tomography (CT) scans as a first-hand tool, which contain 200 to 300 images of a single study for diagnosis. Most of the time, it becomes difficult for a doctor and radiologist to maintain concentration going through all the scans and giving the correct diagnosis, resulting in a misdiagnosis or false diagnosis. Given this, there is a need for an automatic Computer-Aided Diagnosis (CAD) system to assist doctors and radiologists in decision-making. To develop such a system, in this paper, we proposed a deep learning framework based on DenseNet201 to classify PE into nine classes in CT scans. We utilized DenseNet201 as a feature extractor and customized fully connected decision-making layers. The model was trained on the Radiological Society of North America (RSNA)-Pulmonary Embolism Detection Challenge (2020) Kaggle dataset and achieved promising results of 88%, 88%, 89%, and 90% in terms of the accuracy, sensitivity, specificity, and Area Under the Curve (AUC), respectively.


Asunto(s)
Aprendizaje Profundo , Embolia Pulmonar , Humanos , Tomografía Computarizada por Rayos X/métodos , Diagnóstico por Computador/métodos , Embolia Pulmonar/diagnóstico por imagen , Computadores , Sensibilidad y Especificidad
7.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833507

RESUMEN

Effective communication in vehicular networks depends on the scheduling of wireless channel resources. There are two types of channel resource scheduling in Release 14 of the 3GPP, i.e., (1) controlled by eNodeB and (2) a distributed scheduling carried out by every vehicle, known as Autonomous Resource Selection (ARS). The most suitable resource scheduling for vehicle safety applications is the ARS mechanism. ARS includes (a) counter selection (i.e., specifying the number of subsequent transmissions) and (b) resource reselection (specifying the reuse of the same resource after counter expiry). ARS is a decentralized approach for resource selection. Therefore, resource collisions can occur during the initial selection, where multiple vehicles might select the same resource, hence resulting in packet loss. ARS is not adaptive towards vehicle density and employs a uniform random selection probability approach for counter selection and reselection. As a result, it can prevent some vehicles from transmitting in a congested vehicular network. To this end, the paper presents Truly Autonomous Resource Selection (TARS) for vehicular networks. TARS considers resource allocation as a problem of locally detecting the selected resources at neighbor vehicles to avoid resource collisions. The paper also models the behavior of counter selection and resource block reselection on resource collisions using the Discrete Time Markov Chain (DTMC). Observation of the model is used to propose a fair policy of counter selection and resource reselection in ARS. The simulation of the proposed TARS mechanism showed better performance in terms of resource collision probability and the packet delivery ratio when compared with the LTE Mode 4 standard and with a competing approach proposed by Jianhua He et al.


Asunto(s)
Simulación por Computador
8.
PeerJ ; 6: e6058, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30581666

RESUMEN

BACKGROUND: Several technology-assisted aids are available to help blind and visually impaired people perform their daily activities. The current research uses the state-of-the-art technology to enhance the utility of traditional navigational aids to produce solutions that are more reliable. In this regard, a white cane is no exception, which is supplemented with the existing technologies to design Electronic Travel Aids (ETAs), Electronic Orientation Aids (EOAs), and Position Locator Devices (PLDs). Although several review articles uncover the strengths and limitations of research contributions that extend traditional navigational aids, we find no review article that covers research contributions on a technology-assisted white cane. The authors attempt to fill this literature gap by reviewing the most relevant research articles published during 2010-2017 with the common objective of enhancing the utility of white cane with the existing technology. METHODS: The authors have collected the relevant literature published during 2010-17 by searching and browsing all the major digital libraries and publishers' websites. The inclusion/exclusion criteria were applied to select the research articles that are relevant to the topic of this review article, and all other irrelevant papers were excluded. Among the 577 (534 through database searching and 43 through other sources) initially screened papers, the authors collected 228 full-text articles, which after applying exclusion/inclusion criteria resulted in 36 papers that were included in the evaluation, comparison, and discussion. This also includes research articles of commercially available aids published before the specified range. RESULTS: The findings show that the research trend is shifting towards developing a technology-assisted white cane solution that is applicable in both indoor and outdoor environments to aid blind users in navigation. In this regard, exploiting smartphones to develop low-cost and user-friendly navigation solution is among the best research opportunities to explore. In addition, the authors contribute a theoretical evaluation framework to compare and evaluate the state-of-the-art solutions, identify research trends and future directions. DISCUSSION: Researchers have been in the quest to find out ways of enhancing the utility of white cane using existing technology. However, for a more reliable enhancement, the design should have user-centric characteristics. It should be portable, reliable, trust-worthy, lightweight, less costly, less power hungry, and require minimal training with special emphasis on its ergonomics and social acceptance. Smartphones, which are the ubiquitous and general-purpose portable devices, should be considered to exploit its capabilities in making technology-assisted white cane smarter and reliable.

9.
Eur J Oral Sci ; 126(5): 373-381, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29984852

RESUMEN

The ultrastructure and immunohistochemistry of secretory proteins of sublingual glands were studied in mice flown on the US space shuttles Discovery [Space Transportation System (STS)-131] and Atlantis (STS-135). No differences in mucous acinar or serous demilune cell structure were observed between sublingual glands of ground (control) and flight mice. In contrast, previous studies showed autophagy and apoptosis of parotid serous acinar cells in flight mice. The expression of parotid secretory protein (PSP) in sublingual demilune cells of STS-131 flight mice was significantly increased compared with ground (control) mice but decreased in STS-135 flight mice. Similarly, expression of mucin (MUC-19) in acinar cells and expression of the type II regulatory subunit of protein kinase A (PKA-RII) in demilune cells were increased in STS-131 flight mice and decreased in STS-135 flight mice, but not significantly. Demilune cell and parotid protein (DCPP) was slightly decreased in mice from both flights, and nuclear PKA-RII was slightly increased. These results indicate that the response of salivary glands to spaceflight conditions varies among the different glands, cell types, and secretory proteins. Additionally, the spaceflight environment, including the effects of microgravity, modifies protein expression. Determining changes in salivary proteins may lead to development of non-invasive methods to assess the physiological status of astronauts.


Asunto(s)
Astronautas , Vuelo Espacial , Glándula Sublingual/metabolismo , Glándula Sublingual/patología , Animales , Apoptosis , Autofagia , Núcleo Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Mucinas , Glándula Parótida , Proteínas y Péptidos Salivales/metabolismo , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Estados Unidos , United States National Aeronautics and Space Administration , Ingravidez/efectos adversos
10.
Exp Dermatol ; 17(8): 640-4, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18177347

RESUMEN

We have previously shown that the rat fuzzy and Charles River 'hairless' mutations are defects in the same gene on rat Chr 1, and are likely orthologues of the frizzy mutation (fr) on mouse Chr 7. To test the hypothesis that these variants could result from defects in Fgfr2, we crossed fr/fr mice (from the inbred FS/EiJ strain) with mice that carry a recessive lethal mutation in Fgfr2. Mice inheriting both mutations were phenotypically normal, indicating that fr is not an allele of Fgfr2. To genetically map fr, we crossed these hybrid mice, or F(1) mice made by crossing FS/EiJ with the wild-type C57BL/6J or BALB/cBy strains, back to the FS/EiJ strain. The resulting 546 backcross progeny were typed for linked markers to position fr centromeric of Fgfr2, between D7Csu5 and D7Mit165; an interval that contains only 2.7 Mb and fewer than 70 genes. Further characterization of regional recombinants for sequence-level polymorphisms should allow sufficient refinement of fr's location to facilitate an eventual molecular assignment for this classical mutation.


Asunto(s)
Cabello/anomalías , Mutación , Animales , Secuencia de Bases , Mapeo Cromosómico , Cruzamientos Genéticos , Cartilla de ADN/genética , Femenino , Genes Letales , Genes Recesivos , Prueba de Complementación Genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Mutantes , Ratas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/deficiencia , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA