Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 294(12): 4381-4400, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30679313

RESUMEN

MicroRNAs of the miR-16 and miR-34 families have been reported to inhibit cell cycle progression, and their loss has been linked to oncogenic transformation. Utilizing a high-throughput, genome-wide screen for miRNAs and mRNAs that are differentially regulated in osteosarcoma (OS) cell lines, we report that miR-449a and miR-424, belonging to the miR-34 and miR-16 families, respectively, target the major S/G2 phase cyclin, cyclin A2 (CCNA2), in a bipartite manner. We found that the 3'-UTR of CCNA2 is recognized by miR-449a, whereas the CCNA2 coding region is targeted by miR-424. Of note, we observed loss of both miR-449a and miR-424 in OS, resulting in derepression of CCNA2 and appearance of aggressive cancer phenotypes. Ectopic expression of miR-449a and miR-424 significantly decreased cyclin A2 levels and inhibited proliferation rate, migratory potential, and colony-forming ability of OS cells. To further probe the roles of miR-449a and miR-424 in OS, we developed an OS mouse model by intraosseous injection of U2OS cells into the tibia bone of NOD-scid mice, which indicated that miR-449a and miR-424 co-expression suppresses tumor growth. On the basis of this discovery, we analyzed the gene expression of human OS biopsy samples, revealing that miR-449a and miR-424 are both down-regulated, whereas cyclin A2 is significantly up-regulated in these OS samples. In summary, the findings in our study highlight that cyclin A2 repression by miRNAs of the miR-16 and miR-34 families is lost in aggressive OS.


Asunto(s)
Neoplasias Óseas/genética , Ciclina A2/metabolismo , MicroARNs/fisiología , Osteosarcoma/genética , Regiones no Traducidas 3' , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Replicación del ADN , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fase G1 , Fase G2 , Redes Reguladoras de Genes , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , ARN Mensajero/genética , Fase S
2.
Mol Cell ; 70(1): 9-20.e6, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625041

RESUMEN

Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Cruciforme , ADN de Hongos/genética , Meiosis , Ácidos Nucleicos Heterodúplex/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , ADN de Hongos/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell Biol ; 38(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29061732

RESUMEN

The migration of chromosomes during mitosis is mediated primarily by kinesins that bind to the chromosomes and move along the microtubules, exerting pulling and pushing forces on the centrosomes. We report that a DNA replication protein, Sld5, localizes to the centrosomes, resisting the microtubular pulling forces experienced during chromosome congression. In the absence of Sld5, centriolar satellites, which normally cluster around the centrosomes, are dissipated throughout the cytoplasm, resulting in the loss of their known function of recruiting the centrosomal protein, pericentrin. We observed that Sld5-deficient centrosomes lacking pericentrin were unable to endure the CENP-E- and Kid-mediated microtubular forces that converge on the centrosomes during chromosome congression, resulting in monocentriolar and acentriolar spindle poles. The minus-end-directed kinesin-14 motor protein, HSET, sustains the traction forces that mediate centrosomal fragmentation in Sld5-depleted cells. Thus, we report that a DNA replication protein has an as yet unknown function of ensuring spindle pole resistance to traction forces exerted during chromosome congression.


Asunto(s)
Centriolos/metabolismo , Centrosoma/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP/genética , Miembro 3 de la Subfamilia B de Transportadores de Casetes de Unión a ATP/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Centrosoma/química , Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos/metabolismo , Daño del ADN , Células HeLa , Humanos , Interfase/fisiología , Microtúbulos/química , Microtúbulos/fisiología , Mitosis , Polos del Huso/fisiología , Polos del Huso/ultraestructura , Imagen de Lapso de Tiempo
4.
J Biol Chem ; 292(52): 21264-21281, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29109143

RESUMEN

The tumor microenvironment is characterized by nutrient-deprived conditions in which the cancer cells have to adapt for survival. Serum starvation resembles the growth factor deprivation characteristic of the poorly vascularized tumor microenvironment and has aided in the discovery of key growth regulatory genes and microRNAs (miRNAs) that have a role in the oncogenic transformation. We report here that miR-874 down-regulates the major G1/S phase cyclin, cyclin E1 (CCNE1), during serum starvation. Because the adaptation of cancer cells to the tumor microenvironment is vital for subsequent oncogenesis, we tested for miR-874 and CCNE1 interdependence in osteosarcoma cells. We observed that miR-874 inhibits CCNE1 expression in primary osteoblasts, but in aggressive osteosarcomas, miR-874 is down-regulated, leading to elevated CCNE1 expression and appearance of cancer-associated phenotypes. We established that loss of miR-874-mediated control of cyclin E1 is a general feature of osteosarcomas. The down-regulation of CCNE1 by miR-874 is independent of E2F transcription factors. Restoration of miR-874 expression impeded S phase progression, suppressing aggressive growth phenotypes, such as cell invasion, migration, and xenograft tumors, in nude mice. In summary, we report that miR-874 inhibits CCNE1 expression during growth factor deprivation and that miR-874 down-regulation in osteosarcomas leads to CCNE1 up-regulation and more aggressive growth phenotypes.


Asunto(s)
Ciclina E/fisiología , MicroARNs/fisiología , Proteínas Oncogénicas/fisiología , Osteosarcoma/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Ciclina E/genética , Ciclina G1/metabolismo , Regulación hacia Abajo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Oncogénicas/genética , Oncogenes , Osteosarcoma/genética , Fase S
5.
Nucleic Acids Res ; 43(10): 4962-74, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25916848

RESUMEN

The primary eukaryotic single-stranded DNA-binding protein, Replication protein A (RPA), binds to single-stranded DNA at the sites of DNA damage and recruits the apical checkpoint kinase, ATR via its partner protein, ATRIP. It has been demonstrated that absence of RPA incapacitates the ATR-mediated checkpoint response. We report that in the absence of RPA, human single-stranded DNA-binding protein 1 (hSSB1) and its partner protein INTS3 form sub-nuclear foci, associate with the ATR-ATRIP complex and recruit it to the sites of genomic stress. The ATRIP foci formed after RPA depletion are abrogated in the absence of INTS3, establishing that hSSB-INTS3 complex recruits the ATR-ATRIP checkpoint complex to the sites of genomic stress. Depletion of homologs hSSB1/2 and INTS3 in RPA-deficient cells attenuates Chk1 phosphorylation, indicating that the cells are debilitated in responding to stress. We have identified that TopBP1 and the Rad9-Rad1-Hus1 complex are essential for the alternate mode of ATR activation. In summation, we report that the single-stranded DNA-binding protein complex, hSSB1/2-INTS3 can recruit the checkpoint complex to initiate ATR signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína de Replicación A/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN de Cadena Simple/metabolismo , Células HeLa , Humanos , Proteínas Quinasas/metabolismo , Interferencia de ARN , Proteína de Replicación A/genética , Transducción de Señal , Estrés Fisiológico/genética
6.
Nucleic Acids Res ; 40(15): 7332-46, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22570418

RESUMEN

When mammalian cells experience radiation insult, DNA replication is stalled to prevent erroneous DNA synthesis. UV-irradiation triggers proteolysis of Mcm10, an essential human replication factor, inhibiting the ongoing replication. Here, we report that Mcm10 associates with E3 ubiquitin ligase comprising DNA damage-binding protein, DDB1, cullin, Cul4 and ring finger protein, Roc1. Depletion of DDB1, Roc1 or Cul4 abrogates the UV-triggered Mcm10 proteolysis, implying that Cul4-Roc1-DDB1 ubiquitin ligase mediates Mcm10 downregulation. The purified Cul4-Roc1-DDB1 complex ubiquitinates Mcm10 in vitro, proving that Mcm10 is its substrate. By screening the known DDB1 interacting proteins, we discovered that VprBP is the substrate recognition subunit that targets Mcm10 for degradation. Hence, these results establish that Cul4-DDB1-VprBP ubiquitin ligase mediates the stress-induced proteolysis of replication factor, Mcm10.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Ciclo Celular/química , Línea Celular , Replicación del ADN , Regulación de la Expresión Génica , Células HeLa , Humanos , Proteínas de Mantenimiento de Minicromosoma , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína , Proteolisis , Estrés Fisiológico/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas , Ubiquitinación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA