Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(19): 16851-16858, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214665

RESUMEN

Furosemide (4-chloro-2-(furan-2-ylmethylamino)-5-sulfamoyl benzoic acid) is a widely used, FDA-approved drug prescribed for several symptoms associated with heart, kidney, liver failure, or chronic high blood pressure. In this work, a glassy carbon working electrode modified with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate is developed to detect furosemide (FURO) with high sensitivity and precise selectivity. The modified electrode was also characterized using field emission scanning electron microscopy, attenuated total reflectance-Fourier transform infrared, and cyclic voltammetry. Here, an efficient and cost- and time-efficient technique to study the furosemide mechanism of reaction in an acidic liquid medium is presented. An electrochemical oxidation of loop diuretic furosemide was investigated in a supporting electrolyte, 0.01 M of phosphate buffer (at a pH level of 4.0) at 25 ± 0.1 °C using a differential pulse voltammetric (DPV) technique. Under optimized parameters, the developed sensor displays a wide detection range of furosemide concentrations of 6.0 × 10-6 to 1.0 × 10-4 M with a detection limit of 2.0 × 10-6 M using DPV. The presented sensor offers a robust and high-precision technique with an excellent reproducibility to detect furosemide in as a real sample such as urine and pharmaceutical products.

2.
Crit Rev Anal Chem ; : 1-18, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068703

RESUMEN

MXene is a rapidly emerging group of two-dimensional (2D) multifunctional nanomaterials, drawing huge attention from researchers of a broad scientific field. Reporting the synthesis of MXene was the following breakthrough in 2D materials following the discovery of graphene. MXene is considered the most recent developments of materials, including transition metal carbonitrides, nitrides, and carbides synthesized by etching or mechanical-based exfoliation of selective MAX phases. MXene has a plethora of prodigious properties such as unique interlayer spacing, high ion and electron transport, large surface area, excellent thermal and electrical conductivity, exceptional volumetric capacitance, thermal shock, and oxidation resistance, easily machinable and inherently hydrophilic, and biocompatibility. Owing to the abundance of tailorable surface function groups, these properties can be further enhanced by surface functionalization with covalent and non-covalent modifications via numerous surface functionalization methods. Therefore, MXene finds their way to a plethora of applications in numerous fields including catalysis, membrane separation, energy storage, sensing, and biomedicine. Here, the focus is on reviewing the structure, synthesis techniques, and functionalization methods of MXene. Furthermore, MXene-based detection platforms in different sensing applications are survived. Great attention is given to reviewing the applications of MXene in the detection of biomolecules, pathogenic bacteria and viruses, cancer biomarkers food contaminants and mycotoxins, and hazardous pollutants. Lastly, the future perspective of MXene-based biosensors as a next-generation diagnostics tool is discussed. Crucial visions are introduced for materials science and sensing communities to better route while investigating the potential of MXene for creating innovative detection mechanisms.

3.
ACS Omega ; 7(8): 6787-6794, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252673

RESUMEN

This study investigated the comparative effects of mixed nanocomposite (MNC) fertilizers as an alternative to commercial fertilizers (CFs) on endophytic symbiosis and nutritional properties of rice grains. We synthesized MNC fertilizers with different concentrations and characterized them by using scanning electron microscopy and Fourier transform infrared spectroscopy. The CF was applied as per the method followed by local farmers; however, for MNC fertilizers both foliar and soil applications were done. Comparative analysis of growth and development, rice-endophyte symbiosis, and nutritional properties of rice grains was conducted. The panicles per hill, length of panicles, grain per panicles, 1000-grain weight, and dry matter of rice plants treated with MNC fertilizers were found to be not statistically (p > 0.05) different compared to those of CF. However, growth parameters were significantly (p < 0.05) higher in MNC fertilizer-treated crops than in CF-treated crops. Several predominant endophytes such as Penicillium spp., Aspergillus fumigatus, Rhizopus spp., and Fusarium spp. that could have significant effects on the enhancement of growth and nutritional properties of rice grains were identified in rice plants treated with MNC fertilizers at different concentrations. Contrarily, stem-associated Cercospora spp. was found in the CF-treated field and fission yeast was observed in the blank-treated field. In addition, the contents of proteins, fibers, carbohydrates, energy-yielding components, vitamin A, and minerals were significantly increased in rice plants treated with MNC fertilizers. Thus, we would like to conclude that MNC fertilizers could be one of the most potential alternatives to CFs for achieving better rice-endophyte symbiosis as well as nutritional improvements in rice grains for sustainable production.

4.
ACS Omega ; 6(41): 27112-27120, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34693131

RESUMEN

Due to the higher potential for enhancing nutrient use efficiency, nanofertilizer (NF) is crucial in sustainable crop production. Thus, foliar-applied mixed nanofertilizer (MNFf) and commercial fertilizer (CF) into the soil (CFs) were claimed together ([MNFf + CFs]) and comparative nutrient use efficiency (NUE), productivity, and nutritional properties of tomato fruits were investigated. The mixed nanofertilizer (MNF) was prepared in our laboratory and characterized using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared. To avoid the interference of other factors, all the treatments were divided into three groups: (i) blank treatment (no fertilizer), (ii) CF treatment, and (iii) combined [MNFf + CFs] treatment. The vegetative growth and qualitative and quantitative attributes of tomatoes were recorded, and the NUE, total production, and benefit-cost ratio (BCR) were also calculated. In addition, comparative nutritional properties for all treatments were analyzed. The plant's height, stem diameter, root length, photosynthetic pigments, leaf minerals, and qualitative traits of tomato fruits were significantly (p < 0.05) increased by [MNFf + CFs] treatment compared to CFs. The protein, fiber, Fe, Zn, and K contents were significantly (p < 0.05) increased by 23.80, 38.10, 44.23, 60.01, and 2.39%, respectively, with the [MNFf + CFs] treatment as compared to CFs, while the ash and protein contents were both lower than the untreated tomato. Moreover, [MNFf + CFs] treatment has significantly (p < 0.05) increased the antioxidant properties. The NUE, total production, and BCR were also increased by 26.08, 26.04, and 25.38%, respectively, with the same treatment. Thus, [MNFf + CFs] treatment could be a potential alternative for reducing the excess use of CF.

5.
Sci Rep ; 11(1): 21312, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716390

RESUMEN

Arsenotrophic bacteria play an essential role in lowering arsenic contamination by converting toxic arsenite [As (III)] to less toxic and less bio-accumulative arsenate [As (V)]. The current study focused on the qualitative and electrocatalytic detection of the arsenite oxidation potential of an arsenite-oxidizing bacteria A. xylosoxidans BHW-15 (retrieved from As-contaminated tube well water), which could significantly contribute to arsenic detoxification, accumulation, and immobilization while also providing a scientific foundation for future electrochemical sensor development. The minimum inhibitory concentration (MIC) value for the bacteria was 15 mM As (III). Scanning Electron Microscopy (SEM) investigation validated its intracellular As uptake capacity and demonstrated a substantial association with the MIC value. During the stationary phase, the strain's As (III) transformation efficiency was 0.0224 mM/h. Molecular analysis by real-time qPCR showed arsenite oxidase (aioA) gene expression increased 1.6-fold in the presence of As (III) compared to the untreated cells. The immobilized whole-cell also showed As (III) conversion up to 18 days. To analyze the electrochemical oxidation in water, we developed a modified GCE/P-Arg/ErGO-AuNPs electrode, which successfully sensed and quantified conversion of As (III) into As (V) by accepting electrons; implying a functional As oxidase enzyme activity in the cells. To the best of our knowledge, this is the first report on the electrochemical observation of the As-transformation mechanism with Achromobacter sp. Furthermore, the current work highlighted that our isolate might be employed as a promising candidate for arsenic bioremediation, and information acquired from this study may be helpful to open a new window for the development of a cost-effective, eco-friendly biosensor for arsenic species detection in the future.


Asunto(s)
Achromobacter denitrificans/metabolismo , Arsénico/química , Bioacumulación , Inactivación Metabólica/fisiología , Achromobacter denitrificans/genética , Electroquímica , Regulación Bacteriana de la Expresión Génica , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
6.
BMC Chem ; 15(1): 17, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722300

RESUMEN

BACKGROUND: In order to enhance the antibacterial activity and reduce the toxicity of Zn2+, novel complexes of Zn(II) were synthesized. RESULTS: A water-soluble zinc-glucose-citrate complex (ZnGC) with antibacterial activity was synthesized at pH 6.5. The structure, morphology, characterization, acute toxicity, antibacterial and antioxidant activities, and in situ intestinal absorption were investigated. The results showed that zinc ion was linked with citrate by coordinate bond while the glucose was linked with it through intermolecular hydrogen bonding. The higher the molecular weight of sugar is, the more favorable it is to inhibit the formation of zinc citrate precipitation. Compared with ZnCl2, ZnGC complex presented better antibacterial activity against Staphylococcus aureus (S. aureus, Gram-positive) and Escherichia coli (E. coli, Gram-negative). CONCLUSIONS: The results of acute toxicity showed no obvious toxicity in this test and in situ intestinal absorption study, suggesting that ZnGC complex could be used as a potential zinc supplement for zinc deficiency.

7.
Food Chem ; 349: 129208, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33578247

RESUMEN

The edible films composed ofcarboxymethyl cellulose (CMC), glycerol, mucilage from Chinese yam (DOM)and ZnO nanoparticles (ZnO-NPs), were prepared by a casting method. To evaluate the applicability for food packaging, prepared films were characterised morphological, physical, rheological, mechanical and barrier properties, performed FT-IR, thermal analysis, and finally investigated the antibacterial activity and acute oral toxicity of films. The surface of films presented irregular arrangement with nanoparticles combined in the networks, suggesting the best "CMC to DOM weight ratio" of approximately 1:1 could provide a smooth surface. The films with 2.0 g ZnO-NPs presented antibacterial effects against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. With the increase of DOM, the antibacterial rate dropped at 400 and 450 µL/mL. The film-forming solutions with higher ZnO-NPs content display shear-thinning properties and liquid-like behaviour. The edible films have a great potential to be used in application in food packaging.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Carboximetilcelulosa de Sodio/química , Dioscorea/química , Películas Comestibles , Glicerol/química , Óxido de Zinc/química , Escherichia coli/efectos de los fármacos , Nanocompuestos/química , Nanopartículas/química , Staphylococcus aureus/efectos de los fármacos
8.
ACS Omega ; 5(37): 23960-23966, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32984716

RESUMEN

In this work, we have proposed a new formulation of a hybrid nanofertilizer (HNF) for slow and sustainable release of nutrients into soil and water. Urea-modified hydroxyapatite was synthesized, which is a rich source of nitrogen, calcium, and phosphate. Nanoparticles such as copper, iron, and zinc were incorporated into urea-modified hydroxyapatite to increase the efficiency of the proposed fertilizer. Different techniques including powder X-ray powder diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy were used to get insight into the properties, morphology, and structure of the as-prepared fertilizer. The developed HNF was used in a field experiment on the ladies' finger (Abelmoschus esculentus) plant. The slow release of HNF was observed during leaching studies and confirmed the availability of Ca2+, PO4 3-, NO2-, NO3-, Cu2+, Fe2+, and Zn2+. Furthermore, the presence of Cu2+, Fe2+, and Zn2+ nutrients in ladies' finger was confirmed by the inductively coupled plasma-optical emission spectrometry (ICP-OES) experiment. A considerable increase in the physicochemical properties such as swelling ratio and water absorption and retention capacities of the proposed fertilizer was observed, which makes the fertilizer more attractive and beneficial compared with the commercial fertilizer. The composition of the proposed HNF was functionally valuable for slow and sustainable release of plant nutrients. The dose of prepared HNF applied was 50 mg/week, whereas the commercial fertilizer was applied at a dose of 5 g/week to A. esculentus. The obtained results showed a significant increase of Cu2+, Fe2+, and Zn2+ nutrient uptake in A. esculentus as a result of slow release from HNF.

9.
Analyst ; 144(5): 1671-1678, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30652696

RESUMEN

In this work, a sensitive and selective electrochemical aptasensor for determination of microcystin-LR (MC-LR) was developed based on a dual signal amplification system consisting of a novel ternary composite and horseradish peroxidase (HRP). The ternary composite was prepared by depositing gold nanoparticles (AuNPs) on molybdenum disulfide (MoS2) covered TiO2 nanobeads (TiONBs). MoS2 nanosheet modified TiONBs provided a large surface area for immobilization of AuNPs and biomolecules. The ternary composite also possesses an improved electron transfer and catalytic capability. To construct the aptasensor, thiolated MC-LR aptamers were immobilized on the AuNP@MoS2-TiONB modified electrode through a gold-sulfur bond. Then, biotin-cDNA with a sequence complementary to the MC-LR aptamer competed with MC-LR for binding to the immobilized aptamer. The current signal catalyzed by avidin-HRP decreased with the increase of MC-LR, based on which a linear range of 0.005-30 nM and a detection limit of 0.002 nM were obtained.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Microcistinas/análisis , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Benzoquinonas/química , ADN Complementario/genética , Disulfuros/química , Agua Potable/análisis , Oro/química , Peroxidasa de Rábano Silvestre/química , Límite de Detección , Toxinas Marinas , Nanopartículas del Metal/química , Microcistinas/química , Molibdeno/química , Hibridación de Ácido Nucleico , Reproducibilidad de los Resultados , Ríos/química , Titanio/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...