Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Biometeorol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722337

RESUMEN

Phenological shifts are one of the most visible signs of climatic variability and change in the biosphere. However, modeling plant phenological responses has always been a key challenge due to climatic variability and plant adaptation. Grapevine is a phenologically sensitive crop and, thus, its developmental stages are affected by the increase in temperature. The goal of this study was to develop a temperature-based grapevine phenology model (GPM) for predicting key developmental stages for different table grape cultivars for a non-traditional viticulture zone in south Asia. Experiments were conducted in two vineyards at two locations (Chakwal and Islamabad) in the Pothawar region of Pakistan during the 2019 and 2020 growing seasons for four cultivars including Perlette, King's Ruby, Sugraone and NARC Black. Detailed phenological observations were obtained starting in January until harvest of the grapes. The Mitscherlich monomolecular equation was used to develop the phenology model for table grapes. There was a strong non-linear correlation between the Eichhorn and Lorenz phenological (ELP) scale and growing degree days (GDD) for all cultivars with coefficient of determinations (R2) ranging from 0.90 to 0.94. The results for model development indicated that GPM was able to predict phenological stages with high skill scores, i.e., a root mean square (RMSE) of 2.14 to 2.78 and mean absolute error (MAE) of 1.86 to 2.26 days. The prediction variability of the model for the onset timings of phenological stages was up to 3 days. The results also reveal that the phenology model based on GDD approach provides an efficient planning tool for viticulture industry in different grape growing regions. The proposed methodology, being a simpler one, can be easily applied to other regions and cultivars as a predictor for grapevine phenology.

2.
Plant Dis ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568787

RESUMEN

Stem rot caused by Sclerotinia sclerotiorum is a serious, and sometimes devastating, disease of lupin (Lupinus spp.). Two hundred and thirty-six lupin accessions from across 12 Lupinus species were screened against the prevalent S. sclerotiorum isolate MBRS-1 (pathotype 76). L. angustifolius accession 21655 and L. albus var. albus accession 20589 showed immune and 'near-immune' responses, respectively. Thirteen accessions of L. angustifolius, three accessions each of L. albus and L. albus var. albus, and a single accession each of L. albus var. graecus, L. mutabilis, L. palaestinus and L. pilosus (totalling ~4%) showed a highly resistant (HR) response. A further 19 accessions of L. angustifolius, two accessions each of L. albus and L. pilosus, and a single accession of L. mutabilis (totalling ~10%) showed a resistant (R) response. The reactions of 16 (15 L. angustifolius, one L. digitatus) of these 236 accessions were also compared with their reactions to a different isolate, WW-3 (pathotype 10). Against this isolate, five L. angustifolius accessions showed a HR response and four showed a R response, and the L. digitatus accession showed a moderate resistance (MR) response. Overall, isolate WW-3 caused significantly (P<0.05) smaller lesions than MBRS-1 across tested accessions in common. In addition, 328 plants in a 'wild' naturalized field population of L. cosentini were screened in situ in the field against isolate MBRS-1. Five (~1.5%) of the 328 plants of wild lupin showed an immune response, 63 (~19%) showed a HR response, and 146 (~45%) showed a R response. We believe this is the first examination of diverse Lupinus spp. germplasm responses to a prevalent pathotype of S. sclerotiorum. Lupin genotypes exhibiting high level resistance to Sclerotinia stem rot identified in this study can now be used as parental lines for crosses in lupin breeding programs and/or directly as improved cultivars to reduce the adverse impact of this disease on lupin crops.

3.
Int J Biometeorol ; 67(11): 1881-1896, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37718384

RESUMEN

Rising air temperature due to climate change has posed a mammoth challenge to global viticulture and key berry quality traits are compromised. Exploring the effects of seasonal temperature variability on berry ripening and quality attributes in different viticulture regions may help in sustainable viticulture industry. The present research was designed to explore the effect of temperature variables on key quality attributes of table grape cultivars in Pothwar region of Pakistan. Key berry quality traits such as total soluble solids (TSS), titratable acidity (TA), maturity indices (MI), ascorbic acid, sugars, total polyphenol contents (TPC) and total anthocyanin contents (TAC) were unlocked for four important table grape cultivars under varying environmental conditions at Chakwal and Islamabad districts for two consecutive vintages of 2019 and 2020. The district Chakwal has up to 0.92 °C, 1.35 °C, 1.12°C and 0.81°C higher Tmin, Tmax, Tmean and diurnal temperature variation (DTV) respectively, compared to Islamabad particularly for the 2019 vintage. The results of the present study revealed that the warmer site (Chakwal) has significantly (P ≤0.05) higher juice pH, TSS (°brix) and maturity indices (MI) particularly for the relatively hotter vintage of 2019. Interestingly, MI was 33% higher for the relatively warmer vintage of 2019 compared to 2020 with relatively lower acidity (up to 38%). Moreover, higher titratable acidity (11.2%), ascorbic acid (28.5%), polyphenols (20.3%) and anthocyanins (10.6%) were noticed for the colder Islamabad compared to Chakwal. Although elevated temperature for warmer location and vintage favoured berry ripening, however key biochemical attributes such as titratable acidity, ascorbic acid, polyphenols and anthocyanins were negatively affected. The findings of the present research provide useful insight into the impact of growing season temperature on key berry attributes and may help devise adaptation strategies to improve berry quality.

4.
Heliyon ; 9(9): e19237, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674843

RESUMEN

Identifying the molecular and genetic basis of resistance to Sclerotinia stem rot (Sclerotinia sclerotiorum) is critical for developing long-term and cost-effective management of this disease in rapeseed/canola (Brassica napus). Current cultural or chemical management options provide, at best, only partial and/or sporadic control. Towards this, a B. napus breeding population (Mystic x Rainbow), including the parents, F1, F2, BC1P1 and BC1P2, was utilized in a field study to determine the inheritance pattern of Sclerotinia stem rot resistance (based on stem lesion length, SLL). Broad sense heritability was 0.58 for SLL and 0.44 for days to flowering (DTF). There was a significant negative correlation between SLL and stem diameter (SD) (r = -0.39) and between SLL and DTF (r = -0.28), suggesting co-selection of SD and DTF traits, along with SLL, should assist in improving overall resistance. Non-additive genetic variance was evident for SLL, DTF, and SD. In a genome wide association study (GWAS), a significant quantitative trait locus (QTL) was identified for SLL. Several putative candidate marker trait associations (MTA) were located within this QTL region. Overall, this study has provided valuable new understanding of inheritance of resistance to S. sclerotiorum, and has identified QTL, MTAs and transgressive segregants with high-level resistances. Together, these will foster more rapid selection for multiple traits associated with Sclerotinia stem rot resistance, by enabling breeders to make critical choices towards selecting/developing cultivars with enhanced resistance to this devastating pathogen.

5.
Int J Biometeorol ; 67(5): 745-759, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36943495

RESUMEN

Progressive warming of the grape growing regions has reduced the land capability for sustainable grapevine production and the geographical distribution of grapes. Bud burst, blooming, berry set, veraison, and harvest are the key phenological stages of grapevine, and are crucial for managing vineyard activities. The objective of this study was to evaluate the effect of seasonal temperature variability on the timing of key phenological stages of table grape cultivars in a new emerging viticulture region, i.e., the Pothwar region of Pakistan. Phenological stages of four table grape cultivars were recorded during two consecutive growing seasons at two locations. All phenological stages were attained earlier for the relatively warmer location, i.e., Chakwal. Similarly, the length of the growing season from bud burst to harvest was 15 to 21 days longer for the 2020 growing season than for the 2019 growing season, which corresponds to the inter-annual temperature variability. Moreover, the grapevine cultivars showed a distinct response for each growth phase; cv. Perlette matured earlier while cv. NARC Black was the last to ripen. Despite the large variability in the length of the active growing period from bud burst to harvest, accumulated growing degree days (GDD) varied only in a narrow range, i.e., 1510-1557 for cv. Perlette, 1641-1683 for cv. King's Ruby, 1744-1770 for cv. Sugraone, and 1869-1906 for cv. NARC Black. This implies that seasonal temperature variability using GDD is a better indicator for the phenology of table grape cultivars compared to regular time. It is clear from the results from this study that the variation in phenological responses of table grape cultivars due to temperature differences necessitates genotype and site-specific vineyard management.


Asunto(s)
Temperatura , Vitis , Cambio Climático , Frutas , Reproducción , Estaciones del Año
6.
Mol Biol Rep ; 49(12): 11409-11419, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35960411

RESUMEN

BACKGROUND: Considerable production losses are caused by heat and drought stress in okra. Germplasm evaluation at genetic level is essential for the selection of promising genotypes. Lack of genomic information of okra limits the use of genetic markers. However, syntenic markers of some related family could be used for molecular characterization of major economic traits. METHODS AND RESULTS: Herein, 56 okra genotypes were evaluated for drought and heat tolerance. Sixty-one expressed sequence tags (ESTs) identified for heat and drought tolerance in cotton were searched from literature surveys and databases. The identified ESTs were BLAST searched into okra unigene database. Primers of selected okra unigenes were synthesized and amplified in all genotypes using standard polymerase chain reaction (PCR) protocol. Marker trait association (MTA) of the syntenic unigenes were identified between genotypic and phenotypic data on the basis of linkage disequilibrium Functional syntenic analysis revealed that out of these 61 cotton ESTs 55 had functional homology with okra unigenes. These 55 unigenes were used as markers for further analysis (amplification). Okra genotypes showed significance variations for all the physo-morphological parameters under heat and drought stress. Genotypes Perbhani Karanti, IQRA-III, Selection Super Green, Anmol and Line Bourd performed better under drought stress whereas genotypes Perbhani Karanti, IQRA-III, Green Gold, OK-1501 and Selection Super Green showed heat tolerance. Fifty markers showed amplification in okra. Fifty-six okra genotypes were clustered into three distinct populations. LD analysis has shown most significant linkage between markers Unigene43786 and Unigene3662. MTAs using MLM and GLM models revealed that 23 markers have significant associations (p < 0.05) with different traits under control and stressed conditions. Relative water content is associated with four markers (Unigene10673, Unigene99547, Unigene152901, and Unigene129684) under drought conditions. Whereas, Electrolyte leakage was associated with 3 markers (Unigene109922, Unigene28667 and Unigene146907) under heat stress. CONCLUSION: These identified unigenes may be helpful in the development of drought and heat tolerant genotypes in okra.


Asunto(s)
Abelmoschus , Sequías , Abelmoschus/genética , Etiquetas de Secuencia Expresada , Estrés Fisiológico/genética , Marcadores Genéticos/genética
7.
Chemosphere ; 302: 134793, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35525452

RESUMEN

In the current study, activated carbon (AC) was prepared from date palm using single step activation using boric acid as an activating agent. The synthesized AC was incorporated with alginate (AC-alginate (AC-alg)) to prepare membrane for adsorption of methylene blue (MB) in batch adsorption study. The prepared membrane was characterized using different types of analytical techniques such as FTIR, SEM, and TGA analysis. Adsorption of methylene blue dye from aqueous solution was carried out using AC-alg membrane in batch investigation. Various experimental parameters effecting the adsorption of MB on membrane such as initial pH of dye solution, contact time, concentration of dye solution and temperature were optimized to get maximum adsorption efficiency. Kinetics, isotherm and thermodynamics study was performed for dye adsorption. Pseudo-second order kinetic model and Langmuir adsorption isotherm were well fitted to the experimental data. The maximum adsorption capacity for MB adsorption was 666 mg/g found by Langmuir adsorption isotherm. Thermodynamic study revealed that the adsorption of MB on AC-alg membrane is spontaneous and an exothermic process. The experimental result confirmed that AC-alg membrane is a suitable and easily recoverable adsorbent to be used for efficient removal of MB and MB like other dyes.


Asunto(s)
Phoeniceae , Contaminantes Químicos del Agua , Adsorción , Alginatos/química , Carbón Orgánico/química , Colorantes/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Termodinámica , Contaminantes Químicos del Agua/análisis
8.
Sci Total Environ ; 803: 150035, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500275

RESUMEN

The Loess Plateau is China's primary apple-growing area, and the orchard is a significant source of greenhouse gases (GHGs) emissions due to high nitrogen fertilizer input. Thus, a two-year field study was carried out to investigate the effects of apple wood derived biochar on GHGs emissions during apple orchard production, including soil organic carbon sequestration (SOCSR) and net global warming potential (NGWP) assessments. There are four treatments in this study: 20 t ha-1 biochar in a non-fertilized plot (B); no biochar in a fertilized plot (F); 20 t ha-1 biochar in a fertilized plot (FB); no biochar in a non-fertilized plot (CK). Results showed that the combined application of biochar and fertilizer stimulated CO2 emissions by 9.25% and 8.39% than either biochar or fertilizer alone. Meanwhile, biochar in fertilized plot increased annual N2O emissions by 32.6% as compared to fertilized plot without biochar amendment. Compared with CK, biochar had no significant effect on GHG emissions in unfertilized plot. The N2O emission factor of FB and F were 0.91% and 0.45% respectively in 2017-2018 and they were both 0.34% in 2018-2019. Moreover, compared with CK, the FB and B treatments increased the SOCSR by 316.52% and 354.78%, while, decreased the NGWP by 368.93% and 480.91%, respectively. Thus, biochar application may help reduce the impact of apple production on climate change by sequestering more soil organic carbon and decreasing the NGWP.


Asunto(s)
Malus , Suelo , Agricultura , Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Carbón Orgánico , China , Calentamiento Global , Metano/análisis , Óxido Nitroso/análisis
9.
Plant Dis ; 106(1): 127-136, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34340556

RESUMEN

Sclerotinia sclerotiorum is a necrotrophic fungus causing devastating stem rot and associated yield losses of canola/rapeseed (Brassica napus) worldwide, including in Australia. Developing host resistance against Sclerotinia stem rot is critical if this disease in canola/rapeseed is to be successfully managed, as cultural or chemical control options provide only partial or sporadic control. Three B. napus breeding populations, C2, C5 and C6, including the parents, F1, F2, BC1P1, and BC2P2, were used in a field study with an objective of exploring the inheritance pattern of disease resistance (based on stem lesion length [SLL]) and the genetic relationships of disease with stem diameter (SD) or days to first flowering (DTF), and to compare these new adult plant stem resistances against S. sclerotiorum with those of seedling (cotyledon and leaf) resistances in earlier studies. Heritability (broad sense) of SLL was 0.57 and 0.73 for population C2 at 3 and 5 weeks postinoculation and 0.21 for population C5 at 5 weeks postinoculation. Additive genetic variance was evident within all 3 populations for DTF but not for SD. Narrow-sense heritability for DTF was 0.48 (C2), 0.42 (C5), and 0.32 (C6). SD, DTF, and SLL were all inherited independently, with no significant genetic covariance between traits in bivariate analysis. Genetic variance for SLL in populations C2 and C5 was entirely nonadditive, and there was significant nonadditive genetic covariance of SLL at 3 and 5 weeks postinoculation. Generation means analysis in population C2 supported the conclusion that complex epistatic interactions controlled SLL. Several C2 and C5 progeny showed high adult plant stem resistance, which may be critical in developing enhanced stem resistance in canola/rapeseed. Although population C6 showed no genetic variation for SLL resistance in this study, it showed significant nonadditive genetic variance at the cotyledon and leaf stages in earlier studies. We conclude that host resistance varies across different plant growth stages, and breeding must be targeted for resistance at each growth stage. In populations C2, C5, and C6, resistance to S. sclerotiorum in stem, leaf, and cotyledon was always controlled by nonadditive effects such as complex epistasis or dominance. Overall, our findings in relation to the quantitative inheritance of Sclerotinia stem rot resistance, together with the new high-level resistances identified, will enable breeders to select/develop genotypes with enhanced resistances to S. sclerotiorum.


Asunto(s)
Ascomicetos , Brassica napus , Brassica napus/genética , Cotiledón , Patrón de Herencia , Fitomejoramiento , Enfermedades de las Plantas/genética , Hojas de la Planta/genética , Tallos de la Planta/genética
10.
Braz. arch. biol. technol ; 65: e22210347, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1364434

RESUMEN

Abstract: Olive is grown in semi-arid climatic conditions; however, little is known about mineral changes in olive plant and nutrient requirements during the production period. Hence, the current study was conducted under Pothwar agro-climatic conditions in order to select appropriate stage of macronutrients (N, P, K) application in relation to soil and leaf nutritional status during 2017 and 2018 growing seasons. Soil and leaf analysis were performed at four different phenological stages (i.e. flowering, fruit setting, fruit enlargement and fruit maturity stages). The results revealed that the assessed macronutrient in leaf and soil varied significantly among varieties, phenological stages and growing year. The results revealed also that nitrogen level was found to decrease from fruit set (1.56%) to fruit enlargement stage (1.47%). Leaf and soil N, P and K contents were found higher before the flowering (stage 1) and depleted after fruit harvesting (stage 4), regardless of olive varieties. However, high yielding varieties showed lower nutrients after fruit harvesting (stage 4). Therefore, N content in leaf and soil gradually decreased during fruit growth and development. Whereas, K content in leaf and soil sharply declined from fruit maturity to fruit ripening stage. Overall, the trend of nutrient depletion showed that plants need phosphorus for fruit setting, nitrogen before and after fruit setting, and potash after pit hardening or at oil accumulation stages.

11.
Sci Rep ; 11(1): 18177, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518610

RESUMEN

Kinnow orchards grown in different agro-ecological regions of Punjab, Pakistan, namely Sargodha, Toba Tek Singh (TTS) and Vehari districts, were selected to assess the effect of climate variables on fruit-bearing patterns. Experiment was laid out in RCBD while selecting identical features Kinnow plants and labeled twigs at analogous canopy positions in all three sites. Temperature was reported higher in TTS and Vehari areas, while relative humidity in Sargodha accounted for different levels of agrometeorological indices by computing more variations in warm districts. Climate variables influenced fruit-bearing habits and vegetative growth trend in all three flushes while recording heavy fruit-bearing plants during on-year and light fruit-bearing in off-year at Vehari. Similarly, three vegetative flushes were recorded unevenly in all three sites due to different fruit-bearing patterns induced by climate variables. Harvesting pattern of orchards began earlier in Sargodha, where maximum orchards were harvested before new flowering to add evenness to fruiting habits during on & off-years. In warm conditions, fruit ripening arrived in the peak of winter and mostly domestic market-driven harvesting resulted in late start of fruit picking with more erratic fruit-bearing habits. Both physiological and pathological fruit drops have been significantly affected by climate variables with a higher degree of physiological drop in warm regions and pathological effects in the humid conditions of Sargodha on heavy fruit-bearing plants. Fruit yield and grading quality were also affected in both seasons by showing more asymmetrical trend in yield and fruit grading in warm areas of TTS and Vehari due to an irregular fruiting pattern compared to Sargodha. From now on, the climate variables of the three sites directly influenced the fruiting patterns, vegetative flushes, fruit drops, yields and grades of Kinnow mandarin.

12.
PLoS One ; 16(8): e0255847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388165

RESUMEN

Heat shock proteins (Hsps) are stress-responsive molecular chaperones, which uphold proper protein folding in response to external and internal stresses. The Hsp100 gene family plays a substantial role in thermos-tolerance of plants. This study investigated evolutionary relationship and expression of ClpB/Hsp100 gene family in tomato under heat stress. Six SlHsp100 genes were identified using bioinformatics tools. In silico sub-cellular localization indicated that of these 6 ClpB/Hsp100 members, 4 are found in chloroplast, 1 in mitochondria and 1 in the cytoplasm. For evolutionary study, 36 SlHsp100 genes were included in the phylogenetic tree showing a hierarchical clustering shared by the members of the kingdoms Plantae, Archaea, Chromista, Fungi and Bacteria. A total 4 pairs of orthologous and 5 pairs of paralogous genes were identified. Functional divergence between different Hsp100 clusters showed considerable functional homology. Thermo-tolerance measured in terms of cell viability, cell membrane stability and pollen viability indicated that it was paralleled by thermal resistance of Hsps. Reverse transcriptase polymerase chain reaction was used to analyze gene expression in leaves of five-week-old tomato seedlings following exposure to heat stress (45°C) and control (25°C). Chloroplastic LeHSP110/ClpB gene was upregulated in all tomato genotypes after exposure to heat stress highlighting the crucial role of this gene family in acquired thermo-tolerance.


Asunto(s)
Endopeptidasa Clp/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Secuencia de Aminoácidos , Cloroplastos/metabolismo , Análisis por Conglomerados , Endopeptidasa Clp/clasificación , Calor , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Plantones/metabolismo , Alineación de Secuencia
13.
Plants (Basel) ; 10(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202853

RESUMEN

Pepper is one of the most important vegetables and spices in the world. Principal pungency is contributed by secondary metabolites called capsaicinoids, mainly synthesized in the placenta of pepper fruit. Various factors, including drought, limit pepper production. Flowering is one of the most sensitive stages affected by drought stress. The current study was conducted to determine the effect of drought on different pepper genotypes at the flowering and pod formation stages. Hot pepper (Pusajuala and Ghotki) and Bell pepper (Green Wonder and PPE-311) genotypes were subjected to drought (35% field capacity) at two different stages (flowering (DF) and pod formation (DP) stage). In comparison, control plants were maintained at 65% field capacity. The data regarding flowering survival rates, antioxidant protein activity, and proline content, were collected. Results indicated that parameters like flower survival percentage, number of fruits per plant, and fruit weight had significant differences among the genotypes in both treatments. A high proline level was observed in Green Wonder at the pod formation stage compared to other genotypes. Capsaicin contents of hot pepper genotypes were affected at the pod formation stage. Antioxidants like GPX were highly active (190 units) in Ghotki at pod formation. Bell pepper genotypes had a high APX activity, highly observed (100 units) in PPE-311 at pod formation, and significantly differ from hot pepper genotypes. In the catalase case, all the genotypes had the highest values in DP compared to control and DF, but Pusajuala (91 units) and Green Wonder (83 units) performed best compared to other genotypes. Overall, the results indicate that drought stress decreased reproductive growth parameters and pungency of pepper fruit as most of the plant energy was consumed in defense molecules (antioxidants). Therefore, water availability at the flowering and pod formation stage is critical to ensure good yield and pepper quality.

14.
Environ Sci Pollut Res Int ; 27(7): 7244-7255, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31879883

RESUMEN

This study investigated the causal linkage between environmental pollution by carbon dioxide (CO2) emissions and net foreign direct investment (FDI), along with some other variables, namely economic growth by real per capita income and trade openness, using balanced annual data of 17 countries from Asia for the period from 1980 to 2014. Panel cointegration tests confirm the long-run association among the variables. After checking the panel data for stationarity properties, the method panel fully modified ordinary least squares (FMOLS) is implemented. The FMOLS estimates on CO2 emission model reveal that inward FDI has a significantly positive impact on environmental pollution, supporting the pollution haven hypothesis (PHH). Likewise, FDI model results imply that CO2 emissions represent environmental pollution; economic growth and trade openness are the pivotal determinants of FDI. Panel causality results suggest bidirectional linkages between CO2 emissions and inward FDI. Empirical findings suggest that economic policy reforms are required to channelise foreign capital inflows to a more environmentally healthy direction. The governments of Asian countries should chalk out policies on FDI inflows and the environment in order to achieve sustainable economic growth and development.


Asunto(s)
Dióxido de Carbono/química , Desarrollo Económico , Inversiones en Salud , Asia , Contaminación Ambiental , Internacionalidad
15.
Cent Eur J Immunol ; 43(1): 18-25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29731689

RESUMEN

The human serum is a vital component of the innate immunity of the host that acts as the first line of defence against invading pathogens. A key player in serum-mediated innate immune defence is a system of more than 35 proteins, collectively named as the complement system. After exposure of the pathogen, these proteins are activated in a cascade manner, ultimately forming a membrane attack complex (MAC) on the surface of the pathogen that directly lyses the bacterial cell. Formation of the MAC can be demonstrated in vitro by using serum bactericidal assay (SBA) that works in the absence of cellular components of blood after incubating the serum along with bacteria. Here, we describe the age-related differences in the bactericidal activity of human serum against Pseudomonas aeruginosa, an opportunistic human pathogen causing an array of hospital and community-acquired infections. We demonstrate that adult sera were highly effective in the in vitro killing of Pseudomonas aeruginosa as compared to children and the elderly (p < 0.0001). Sera from children were seriously compromised in the killing P. aeruginosa, whereas elderly sera showed a reduced level of killing. Data revealed a positive correlation between age and serum-killing with higher coefficient of determination values of 0.34, 0.27, and 0.58 and p values of < 0.0001, < 0.001, and < 0.0001, respectively, after 60, 90, and 120 minutes of incubation. Hence, our study highlights the age-related difference in the bactericidal activity of human sera. We conclude that sera of children are totally compromised, whereas elderly sera are only partially compromised, in the killing of P. aeruginosa.

16.
Plants (Basel) ; 6(1)2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28208605

RESUMEN

Understanding the impact of the warming trend on phenological stages and phases of cotton (Gossypium hirsutum L.) in central and lower Punjab, Pakistan, may assist in optimizing crop management practices to enhance production. This study determined the influence of the thermal trend on cotton phenology from 1980-2015 in 15 selected locations. The results demonstrated that observed phenological stages including sowing (S), emergence (E), anthesis (A) and physiological maturity (M) occurred earlier by, on average, 5.35, 5.08, 2.87 and 1.12 days decade-1, respectively. Phenological phases, sowing anthesis (S-A), anthesis to maturity (A-M) and sowing to maturity (S-M) were reduced by, on average, 2.45, 1.76 and 4.23 days decade-1, respectively. Observed sowing, emergence, anthesis and maturity were negatively correlated with air temperature by, on average, -2.03, -1.93, -1.09 and -0.42 days °C-1, respectively. Observed sowing-anthesis, anthesis to maturity and sowing-maturity were also negatively correlated with temperature by, on average, -0.94, -0.67 and -1.61 days °C-1, respectively. Applying the cropping system model CSM-CROPGRO-Cotton model using a standard variety in all locations indicated that the model-predicted phenology accelerated more due to warming trends than field-observed phenology. However, 30.21% of the harmful influence of the thermal trend was compensated as a result of introducing new cotton cultivars with higher growing degree day (thermal time) requirements. Therefore, new cotton cultivars which have higher thermal times and are high temperature tolerant should be evolved.

17.
Pak J Pharm Sci ; 27(5): 1215-39, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25176378

RESUMEN

The plant diversity of Himalayan region has been reduced to greater extent due to environmental degradation and human exploitation. Anthropogenic disturbance was the major factor responsible for fragmentation of forest vegetation into small patches. Little research has been conducted in the Himalayan region of Poonch Valley of North eastern Pakistan with reference to plants biodiversity and its conservation. The present research was carried out to provide a checklist of vegetation for biodiversity conservation. A total of 430 vascular and 5 nonvascular plant species with 5 species of Bryophytes (5 families), 13 species of Pteridophytes (6 families), 4 species of Gymnosperms (1 family) and 413 species of angiosperms (95 families) were enumerated from the Poonch valley Azad Kashmir. The genera were classified into three categories according to the number of species. 25 plant communities with phytosociological parameters and diversity indices were reported. Present study revealed that there were 145 threatened, 30 endangered, 68 vulnerable and 47 rare species. It is recorded that extensive grazing, uprooting of plants and soil slope erosion intensify the environmental problems. Since there is maximum exploitation of vegetation, the valley showed a decline in plant diversity. The study was also indicated that the main threats to the biodiversity are expansion of settlement and army installations in the forest area of the valley. For sustainable use In-situ and Ex-situ conservation, controlled harvesting and afforestation may be the solution. Moreover, forest area should be declared prohibited for settlements and army installations.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Plantas , Pakistán
18.
J Coll Physicians Surg Pak ; 16(1): 42-4, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16441988

RESUMEN

OBJECTIVE: To compare the outcome of intralesional corticosteroid injection and surgical treatment of chalazia. DESIGN: An interventional comparative study. PLACE AND DURATION OF STUDY: PNS Shifa, Naval Hospital, Karachi from 1st September 2002 to 31st August 2003. PATIENTS AND METHODS: During a 9-month recruitment period all patients attending PNS Shifa, Naval Hospital, Karachi, for treatment of chalazia were inducted in the study. A 141 patients with chalazia completed the study. Patients received either incision-curettage (surgical treatment/ ST group) or intralesional corticosteroid injection treatment (steroid injection/ SI group). The same procedure was repeated in unsuccessful cases only once. Z-test of proportion was used as appropriate statistical test of significance at p <0.05 for the comparison of the results between the two groups. RESULTS: The success was achieved in 59 out of 75 patients (79%) in ST group and 41 of 66 patients (62%) in SI group at first visit after two weeks (p-value <0.01). The success in ST group improved to 89% (67 out of 75 patients) after second operation and to 80% (53 out of 66 patients) in SI group after second injection of the steroid given at second week (p-value < 0.14). CONCLUSION: Intralesional steroid injection is an effective and safe alternative procedure for the treatment of chalazia. The results are comparable to surgical treatment especially after second injection. It is not associated with any serious complications although skin depigmentation is relatively common in coloured population.


Asunto(s)
Chalazión/tratamiento farmacológico , Chalazión/cirugía , Glucocorticoides/administración & dosificación , Triamcinolona/administración & dosificación , Adolescente , Adulto , Anciano , Femenino , Humanos , Inyecciones Intralesiones , Masculino , Persona de Mediana Edad , Pakistán , Pigmentación de la Piel , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...