Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1218468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854353

RESUMEN

Chickpea (Cicer arietinum L.), an annual plant of the family Fabaceae is mainly grown in semiarid and temperate regions. Among pulses, cultivated worldwide chickpeas are considered an inexpensive and rich source of protein. Chickpea is a good source of protein and carbohydrate, fiber, and important source of essential minerals and vitamins. The quality of protein is better among other pulses. Consumption of chickpeas is related to beneficial health outcomes. Dietary peptides from the protein of chickpeas gaining more attention. Peptides can be obtained through acid, alkali, and enzymatic hydrolysis. Among all these, enzymatic hydrolysis is considered safe. Various enzymes are used for the production of peptides, i.e., flavorzyme, chymotrypsin, pepsin, alcalase, papain, and trypsin either alone or in combinations. Chickpea hydrolysate and peptides have various bioactivity including angiotensin 1-converting enzyme inhibition, digestive diseases, hypocholesterolemic, CVD, antioxidant activity, type 2 diabetes, anti-inflammatory, antimicrobial, and anticarcinogenic activity. This review summarizes the nutritional composition and bioactivity of hydrolysate and peptides obtained from chickpea protein. The literature shows that chickpea peptides and hydrolysate have various functional activities. But due to the limited research and technology, the sequences of peptides are unknown, due to which it is difficult to conduct the mechanism studies that how these peptides interact. Therefore, emphasis must be given to the optimization of the production of chickpea bioactive peptides, in vivo studies of chickpea bioactivity, and conducting human study trials to check the bioactivity of these peptides and hydrolysate.

2.
Adv Mater ; 35(46): e2302298, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37578639

RESUMEN

Perovskite single-crystal redissolution (PSCR) strategy is highly desired for efficient formamidinium lead triiodide (FAPbI3 ) perovskite photovoltaics with enhanced phase purity, improved film quality, low trap-state density, and good stability. However, the phase transition and crystallization dynamics of FAPbI3 remain unclear in the PSCR process compared to the conventional fabrication from the mixing of precursor materials. In this work, a green-solvent-assisted (GSA) method is employed to synthesize centimeter-sized α-FAPbI3 single crystals, which serve as the high-purity precursor to fabricate perovskite films. The α-FAPbI3 PSCR strategy facilitates direct α-phase formation and inhibits the complex intermediate phases monitored by in situ grazing-incidence wide-angle X-ray scattering. Moreover, the α-phase stability is prolonged due to the relaxation of the residual lattice strain through the isotropic orientation phase growth. Consequently, the GSA-assisted PSCR strategy effectively promotes crystallization and suppresses non-radiative recombination in perovskite solar cells, which boosts the device efficiency from 22.08% to 23.92% with significantly enhanced open circuit voltage. These findings provide deeper insight into the PSCR process in terms of its efficacy in phase formation and lattice strain release. The green low-cost solvent may also offer a new and ideal solvent candidate for large-scale production of perovskite photovoltaics.

3.
Plants (Basel) ; 12(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375867

RESUMEN

The growth and productivity of wheat crops depend on the availability of essential nutrients such as zinc (Zn) and potassium (K2O), which play critical roles in the plant's physiological and biochemical processes. This study aimed to investigate the synergizing effect of zinc and potassium fertilizers on uptake of both the nutrients, growth, yield, and quality of the Hashim-08 cultivar and local landrace, during the 2019-2020 growing season in Dera Ismail Khan, Pakistan. The experiment was designed using a split plot pattern in a randomized complete pattern, with main plots for the wheat cultivars and subplots for the fertilizer treatments. Results indicated that both cultivars responded positively to the fertilizer treatments, with the local landrace exhibiting maximum plant height and biological yield, and improved Hashim-08, showing increased agronomic parameters, including the number of tillers and grains and spike length. Application of Zn and K2O fertilizers significantly enhanced agronomic parameters, such as the number of grains per plant, spike length, thousand-grain weight, grain yield, harvest index, Zn uptake of grain, dry gluten content, and grain moisture content, while crude protein and grain potassium remained relatively unchanged. The soil's Zn and K content dynamics were found to vary among treatments. In conclusion, the combined application of Zn and K2O fertilizers proved beneficial in improving the growth, yield, and quality of wheat crops, with the local landrace exhibiting lower grain yield but greater Zn uptake through fertilizer application. The study's findings highlight that the local landrace showed good response to the growth and qualitative parameter when compared with the Hashim-08 cultivar. Additionally, the combined application of Zn and K showed a positive relation in terms of nutrient uptake and soil Zn and K content.

4.
J Environ Manage ; 328: 116963, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516710

RESUMEN

Since the green revolution, excessive utilization of chemical fertilizers has become prevalent due to concerns about the integrity of food production for the growing population. This indiscriminate use harms the fertility of the soil, especially in sandy soils where nutrient leaching, particularly nitrogen, results in yield losses as well as environmental and health problems. A pot experiment was carried out at Gomal University, Pakistan, in March 2022 to assess the nitrogen use efficiency, nitrogen uptake, and yield of okra. There were nine treatments with four replicates and the treatment combinations were established using a completely randomized design (CRD). Urea coated with agrotain (urease inhibitor) was applied each at 120 and 84 kg N ha-1 in 2 or 3 splits. Urea at 84 kg N ha-1 was also used in combination with Farmyard manure (FYM) and compared against the control (100% recommended urea). Obtained results showed that inhibitor-treated urea significantly increased soil concentrations of NO3-N and NH4-N over non-inhibitor-treated urea. The highest NO3-N was recorded where urea alone and urea treated with 3 L (3 L) agrotain was applied to 100%. The highest ammonical-N was recorded, where 70% urea treated with 3 L agrotain was applied. Urea, in combination with FYM, significantly increased the organic matter. Electrical conductivity in extract (ECe), and pH of the soil. The improvement in yield with inhibitor was at par with 70% and 100% urea. The highest improvement of 16% in fruit yield and 7.29% nitrogen use efficiency was obtained in the treatment receiving 120 kg N ha-1 treated with 3 L agrotain compared with non-inhibitor urea. The 2nd highest improvement of 10% in fruit yield on account of increased fruit length, stem diameter, and number of fruits, and 5.97% nitrogen use efficiency (NUE) was obtained in treatment receiving 120 kg N ha-1 in combination with FYM in comparison to control. These results suggested that the use of N inhibitor significantly increased the okra fruit yield on account of enhancing ammonical-N and increased N use efficiency.


Asunto(s)
Abelmoschus , Suelo , Humanos , Agricultura/métodos , Estiércol , Nitrógeno/análisis , Urea , Productos Agrícolas , Fertilizantes
5.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36432270

RESUMEN

Arsenic (III) is a toxic contaminant in water bodies, especially in drinking water reservoirs, and it is a great challenge to remove it from wastewater. For the successful extraction of arsenic (III), a nanocomposite material (ZnO-CuO/g-C3N4) has been synthesized by using the solution method. The large surface area and plenty of hydroxyl groups on the nanocomposite surface offer an ideal platform for the adsorption of arsenic (III) from water. Specifically, the reduction process involves a transformation from arsenic (III) to arsenic (V), which is favorable for the attachment to the -OH group. The modified surface and purity of the nanocomposite were characterized by SEM, EDX, XRD, FT-IR, HRTEM, and BET models. Furthermore, the impact of various aspects (temperatures, pH of the medium, the concentration of adsorbing materials) on adsorption capacity has been studied. The prepared sample displays the maximum adsorption capacity of arsenic (III) to be 98% at pH ~ 3 of the medium. Notably, the adsorption mechanism of arsenic species on the surface of ZnO-CuO/g-C3N4 nanocomposite at different pH values was explained by surface complexation and structural variations. Moreover, the recycling experiment and reusability of the adsorbent indicate that a synthesized nanocomposite has much better adsorption efficiency than other adsorbents. It is concluded that the ZnO-CuO/g-C3N4 nanocomposite can be a potential candidate for the enhanced removal of arsenic from water reservoirs.

6.
RSC Adv ; 12(3): 1278-1286, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35425203

RESUMEN

Transition metal dichalcogenides (TMDs) have received significant attention owing to their thickness-dependent folded current-voltage (I ds-V ds) characteristics, which offer various threshold voltage values. Owing to these astonishing characteristics, TMDs based negative differential resistance (NDR) devices are preferred for the realization of multi-valued logic applications. In this study, an innovative and ground-breaking germanium selenide/hafnium disulfide (p-GeSe/n-HfS2) TMDs van der Waals heterostructure (vdWH) NDR device is designed. An extraordinary peak-to-valley current ratio (≈5.8) was estimated at room temperature and was used to explain the tunneling and diffusion currents by using the tunneling mechanism. In addition, the p-GeSe/n-HfS2 vdWH diode was used as a ternary inverter. The TMD vdWH diode, which can exhibit different band alignments, is a step forward on the road to developing high-performance multifunctional devices in electronics.

7.
Mater Sci Eng C Mater Biol Appl ; 126: 112146, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082957

RESUMEN

In this research work, facile, economical and eco-benign experimental procedure were adopted to synthesize Au/MgO nanocomposite with the help of Tagetes minuta leaves extract. Phytochemicals present in the leaves of Tagetes minuta were acting as reducing and stabilizing agents to avoid aggregation of nanomaterials during the preparation of Au/MgO nanocomposite. The biologically synthesized nanocomposite were systematically characterized by UV-vis spectroscopy, Scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR), High resolution transmission electron microscopy (HRTEM), Thermogravimetric analysis (TGA), dynamic light scattering (DLS) and elemental mapping. UV-visible spectrum confirmed the presence of MgO and Au due to the presence of two SPR peaks at 315 nm and 528 nm, respectively. Moreover, the Au/MgO nanocomposite exhibited superior photocatalytic, antibacterial, hemolytic, and antioxidant activities. Photocatalytic performance tests of Au/MgO nanocomposite were- appraised by the rapid degradation of the methylene blue (MB) under UV light illumination. More importantly, after four successive cycles of MB degradation, the photocatalytic efficacy remained unchanged, which ensures the stability of the Au/MgO nanocomposite. Furthermore, the antibacterial tests showed that the advanced nanocomposite inhibited the growth of Escherichia coli, Bacillus subtilis, and Staphylococcus aureus with zones of inhibition 18 (±0.3), 21 (±0.5), and 19 (±0.4) mm, respectively. The cytotoxicity study revealed that Au/MgO nanocomposite is nontoxic to ordinary healthy RBCs. Interestingly, the Au/MgO nanocomposite also possesses an excellent antioxidant activity, whereby effectively scavenging 82% stable and harmful DPPH. Overall, the present study concludes that eco-benign Au/MgO nanocomposite has excellent potential for the remediation of bacterial pathogens and degradation of MB.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Tagetes , Antibacterianos/farmacología , Catálisis , Óxido de Magnesio , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
8.
RSC Adv ; 11(31): 19316-19322, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35478651

RESUMEN

A MnO-CrN composite was obtained via the ammonolysis of the low-cost nitride precursors Cr(NO3)3·9H2O and Mn(NO3)2·4H2O at 800 °C for 8 h using a sol-gel method. The specific surface area of the synthesized powder was measured via BET analysis and it was found to be 262 m2 g-1. Regarding its application, the electrochemical sensing performance toward hydrogen peroxide (H2O2) was studied via applying cyclic voltammetry (CV) and amperometry (i-t) analysis. The linear response range was 0.33-15 000 µM with a correlation coefficient (R 2) value of 0.995. Excellent performance toward H2O2 was observed with a limit of detection of 0.059 µM, a limit of quantification of 0.199 µM, and sensitivity of 2156.25 µA mM-1 cm-2. A short response time of within 2 s was achieved. Hence, we develop and offer an efficient approach for synthesizing a new cost-efficient material for H2O2 sensing.

9.
Photodiagnosis Photodyn Ther ; 33: 102162, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33373742

RESUMEN

A major current biomedical challenge is to find materials that are specific, have high efficiency and with long lasting stability to serve as antimicrobial agents. In this contribution we examined new bifunctional nanostructural materials (ZnO/Pd-MCM-41) which were synthesized by a new hydrothermal procedure. To deposit active cites i.e. ZnO, a new protocol was followed in which catechol was used as a precipitating agent. Results indicated that nanostructures comprising palladium nanocrystals of a small size dispersed consistently within the hexagonal pores of the MCM-41 and also ZnO was successfully coated on mesoporous Pd-MCM-41 and that the mesoporous Pd-MCM-41 structure has been well-maintained upon modification of ZnO. The ZnO/Pd-MCM-41 is promising antibacterial agent and have efficient light inhibition activity towards Escherichia coli (E. coli), Psedomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The inhibition zone of irradiated ZnO/Pd-MCM-41 nanostructure against E. coli, P. aeruginosa and S. aureus were (17 ± 0.4) mm, 18 (±0.4) mm and 22 (±0.2) mm respectively while that in dark were (9 ± 0.5) mm, 11 (±0.3) mm and 13 (±0.4) mm respectively. The production of reactive oxygen species and hemolytic assay were also analyzed. Different parameters affecting the photo-inhibition efficiency of ZnO/Pd-MCM-41 were also studied. Likewise, the antioxidant activity of these nanostructures was studied against DPPH stabilization. Results indicated that the synthesized nanostructures are highly active and stabilized 99 % DPPH at very low concentration i.e. 1.4 mg/mL.


Asunto(s)
Preparaciones Farmacéuticas , Fotoquimioterapia , Óxido de Zinc , Antibacterianos/farmacología , Escherichia coli , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Dióxido de Silicio , Staphylococcus aureus
10.
Photodiagnosis Photodyn Ther ; 33: 102153, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33348075

RESUMEN

Green chemistry is a modern area of research which covers synthesis of nanomaterials through useful, environmentally, economically friendly techniques and their use in different fields. The synthesis involves the formation of bimetallic nanomaterials to enhance their synergistic relationship and achieve special modulated properties. That's why bimetallic nanomaterials are extremely important and gaining interest among researchers in the field of medicinal chemistry for the treatment of various diseases. In this particular study, bimetallic nanoparticles synthesis was done by reduction procedure using leaf extract of Olea cuspidata. The phytochemicals in leaf extract act as stabilizing and capping agent in reduction of precursor's salts. The characterization of green synthesized Ag@MgO nanocomposite was done through several analytical techniques such as ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), High resolution transmission electron microscope (HRTEM) and Zeta potential. To explore the biological potential of synthesized nanocomposite, antibacterial activities against gram negative (Escherichia coli) bacteria and gram positive (Staphylococcus aureus) has been evaluated. The photocatalytic activity in contrary to methylene blue (MB) decomposition was seen efficiently. Moreover, the antioxidant nature of green synthesized Ag@MgO nanocomposite was analyzed by destabilizing and scavenging maximum percentage (93 %) of dangerous and harmful 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical. The best and surprising results provided the information for the presence of essential and vital components in Olea Cuspidata in the form of organic acids (Citrus Acid) aids in stabilizing the entire structure with enhanced properties. Up to the best of our knowledge, the facts and results obtained regarding the structure of Ag@MgO nanocomposite clearly illustrates the uniqueness of green chemistry and also its role in future developing multifunctional nanoparticles in the field of nanobiotechnology.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Olea , Fotoquimioterapia , Antibacterianos/farmacología , Antioxidantes/farmacología , Óxido de Magnesio , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Extractos Vegetales/farmacología , Plata
11.
Front Chem ; 8: 78, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133340

RESUMEN

The exploration of noble metal-free catalysts with efficient electrochemical performance toward oxygen reduction reaction in the acid electrolyte is very important for the development of fuel cells technology. Novel pyrolyzed heteroatom-doped Fe/N/C catalysts have been regarded as the most efficient electrocatalytic materials for ORR due to their tunable electronic structure, and distinctive chemical and physical properties. Herein, nitrogen- and sulfur-doped (Fe/N/C and Fe/N/C-S) electrocatalysts were synthesized using ferric chloride hexahydrate as the Fe precursor, N-rich polymer as N precursor, and Ketjen Black EC-600 (KJ600) as the carbon supports. Among these electrocatalysts, the as prepared S and N-doped Fe/N/C-S reveals the paramount ORR activity with a positive half-wave potential value (E 1/2) 0.82 at 0.80 V vs. RHE in 0.1 mol/L H2SO4 solution, which is comparable to the commercial Pt/C (Pt 20 wt%) electrocatalyst. The mass activity of the Fe/N/C-S catalyst can reach 45% (12.7 A g-1 at 0.8 V) and 70% (5.3 A g-1 at 0.95 V) of the Pt/C electrocatalyst in acidic and alkaline solutions. As result, ORR activity of PGM-free electrocatalysts measured by the rotating-ring disk electrode method increases in the following order: Fe/N/C

12.
Nanotechnology ; 31(23): 235704, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32018233

RESUMEN

Two-dimensional (2D) magnetic layered materials have attracted considerable attention in memory storage devices due to their exciting magnetic ordering. Herein, the electronic and magnetic properties of high-quality single crystals zirconium diselenide and copper (Cu)-doped zirconium diselenide as grown via chemical vapor transport technique combined with first principle density functional theory calculations were investigated. A semimetallic state is recognized for Cu0.052Zr0.93Se2 as measured through resistance versus temperature measurements and angle resolved photoemission spectroscopy (ARPES). The magnetic measurement shows diamagnetic semiconducting behaviour for ZrSe2, whereas Cu0.052Zr0.93Se2 exhibits ferromagnetic character via applying perpendicular magnetic field. Cu0.052Zr0.93Se2 reveals the room temperature magnetic moment ∼0.0125 emu g-1, while the Curie temperature is ∼363.49 K. Furthermore, first principle density functional theory (DFT) calculations show energetically long range ferromagnetic ordering in a half-metallic Cu-doped ZrSe2, while a diamagnetic state in case of ZrSe2 agrees well with experiment results. These results suggest that due to strong interaction elements at the octahedral site of zirconium atoms when replaced by copper atoms, which can change the spin ordering of electrons and make zirconium vacancy, while their magnetic moment is increased. Very importantly the half-metallic character of Cu0.052Zr0.93Se2 promotes much spin polarized electrons around the Fermi level, suggesting significant potential in future memory devices and spintronic applications.

13.
Sci Rep ; 9(1): 19809, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874955

RESUMEN

Since the last decades, non-precious metal catalysts (NPMC), especially iron based electrocatalysts show sufficient activity, potentially applicant in oxygen reduction reaction (ORR), however they only withstand considerable current densities at low operating potentials. On the other hand iron based electrocatalysts are not stable at elevated cathode potentials, which is essential for high energy competence, and its remains difficult to deal. Therefore, via this research a simple approach is demonstrated that allows synthesis of nanosize Fe-doped mayenite electride, [Ca24Al28O64]4+·(e-)4 (can also write as, C12A7-xFex:e-, where doping level, x = 1) (thereafter, Fe-doped C12A7:e-), consist of abundantly available elements with gram level powder material production, based on simple citrate sol-gel method. The maximum achieved conductivity of this first time synthesized Fe-doped C12A7:e- composite materials was 249 S/cm. Consequently, Fe-doped C12A7:e- composite is cost-effective, more active and highly durable precious-metal free electrocatalyst, with 1.03 V onset potential, 0.89 V (RHE) half-wave potential, and ~5.9 mA/cm2 current density, which is higher than benchmark 20% Pt/C (5.65 mA/cm2, and 0.84 V). The Fe-doped C12A7:e- has also higher selectivity for desired 4e- pathway, and more stable than 20 wt% Pt/C electrode with higher immunity towards methanol poisoning. Fe-doped C12A7:e- loses was almost zero of its original activity after passing 11 h compared to the absence of methanol case, indicates that to introduce methanol has almost negligible consequence for ORR performance, which makes it highly desirable, precious-metal free electrocatalyst in ORR. This is primarily described due to coexistence of Fe-doped C12A7:e- related active sites with reduced graphene oxide (rGO) with pyridinic-nitrogen, and their strong coupling consequence along their porous morphology textures. These textures assist rapid diffusion of molecules to catalyst active sites quickly. In real system maximum power densities reached to 243 and 275 mW/cm2 for Pt/C and Fe-doped C12A7:e- composite, respectively.

14.
Front Chem ; 7: 738, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781536

RESUMEN

For future pollution-free renewable energy production, platinum group metal (PGM)-free electrocatalysts are highly required for oxygen reduction reaction (ORR) to avoid all possible Fenton reactions and to make fuel cell more economical. Therefore, in this study, to overcome traditional electrocatalyst limitations, we applied facile method to synthesize robust mesoporous CrN-reduced graphene oxide (rGO) nanocomposite with MnO (thereafter, Cr/rGO composite with MnO) as an electrocatalyst by efficient one-step sol-gel method by ammonolysis at 900°C for 9 h. Synthesized porous structures of Cr/rGO nanocomposite with MnO have the highest estimated surface area of 379 m2·g-1, higher than that of the carbon black (216 m2· g cat - 1 ) support, and almost uniform pore size distribution of about 4 nm. The Cr/rGO nanocomposites with MnO exhibit enhanced electrocatalytic ORR properties with estimated high half-wave potential of 0.89 V vs. the reversible hydrogen electrode (RHE) and current density of 5.90 mA·cm-2, compared with that of benchmark 20% Pt/C electrode (0.84 V, 5.50 mA·cm-2), with noticeable methanol tolerance and significantly enhanced stability in alkaline media. Hence, the Cr/rGO nanocomposites with MnO showed superior performance to 20 wt.% Pt/C; their half-wave potentials were 50 mV high, and the limiting current density was 0.40 mA·cm-2 high. In alkaline anion exchange membrane fuel cell (AAEMFC) setup, this cell delivers a power density of 309 mW·cm-2 for Cr/rGO nanocomposite with MnO, demonstrating its potential use for energy conversion applications. The nanosized Cr/rGO metallic crystalline nanocomposites with MnO gave a large active surface area owing to the presence of rGO, which also has an effect on the charge distribution and electronic states. Hence, it may be the reason that Cr/rGO nanocomposites with MnO, acting as more active and more stable catalytic materials, boosted the electrocatalytic properties. The synergistic consequence in nanosized Cr/rGO composite with MnO imparts the materials' high electron mobility and thus robust ORR activity in 0.1 M of KOH solution. This potential method is highly efficient for synthesis of large-scale, non-noble-metal-based electrocatalytic (NNME) materials (i.e., Cr/rGO nanocomposite with MnO) on the gram level and is efficient in preparing novel, low-cost, and more stable non-PGM catalysts for fuel cells.

15.
Environ Sci Pollut Res Int ; 26(31): 31667-31674, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31485949

RESUMEN

This study was carried out to investigate the concentration of two heavy metals, i.e., mercury (Hg) and arsenic (As) in soil and plant. Spinach (Spinacia oleracea L.) was used as a test vegetable in a pot experiment. Five spiked concentrations of both the metals along with sewage water were used as treatments. The analyses of the metals were determined in two cuttings. The results showed significant effect of treatments on the concentration of the two metals in soil and plant. The concentrations of As recorded were higher in 1st spinach cutting and reduced in the second harvest. However, comparing the two metal concentrations, it was found that As was absorbed greater as compared with Hg. Analyzing the plant growth parameter, it was found that metal stress has significantly influenced the plant growth. In sewage water pots, As was significantly higher than Hg. The transfer factor from soil to plant showed higher As in plants at lower concentration, but at higher As levels, the transfer rate declined, while Hg showed it was completely inverse. Positive correlation was found between soil applied metal concentration and plant uptake. It may be concluded from the above results that spinach is a good accumulator of heavy metals and has shown significant result of both As and Hg accumulation in plant. The concentration increased with the increasing concentration in soil.


Asunto(s)
Arsénico/análisis , Mercurio/análisis , Metales Pesados/análisis , Aguas del Alcantarillado/análisis , Contaminantes del Suelo/análisis , Spinacia oleracea/efectos de los fármacos , Intoxicación por Metales Pesados , Metales Pesados/química , Suelo , Spinacia oleracea/química , Verduras
16.
Front Chem ; 7: 934, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32039153

RESUMEN

This manuscript presented a large scale synthesis of Graphitic Shells like carbon nano onions (GS-CNOs) by direct solution method using mayenite electride as a catalyst for synthesis of CNOs. Thermal characterization, microstructural analysis, and high resolution electron microscopy have confirmed the graphitization and revealed the resulting GS-CNOs with particle size about 15 nm, maximum BET surface area of 214 m2.g-1, and moderate conductivity of 250 S.cm-1, thus providing a new approach to synthesize GS-CNOs. The reported GS-CNOs, which acts as more active but less expensive electrocatalysts with onset potential of 1.03 V, half wave potential of 0.88 V vs. the reversible hydrogen electrode (RHE), and limited current density of 5.9 mA.cm-2, higher than that of benchmark 20% Pt/C (1.02 eV, 0.82 V, 5.2 mA.cm-2). The synthesized nano-powder acts as an origin of ORR activity via a four electron (4e-) pathway, along with significantly enhanced stability, in alkaline media. The high ORR activity is ascribed to GS-CNOs embedded sufficient metallic C12A7:e- particles, which favor faster electron movement and better adsorption of oxygen molecules on catalyst surface. Hence, we explored first time large scale synthesis of GS-CNOs with gram level and provide efficient approach to prepare novel, lowest cost, potential non-noble metals catalyst for fuel cells.

17.
Bull Environ Contam Toxicol ; 99(4): 511-517, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28785982

RESUMEN

Antimony (Sb) and arsenic (As) contaminations are the well reported and alarming issues of various contaminated smelting and mining sites all over the world, especially in China. The present hydroponic study was to assess the capacity of Vetiveria zizanioides for Sb, As and their interactive accumulations. The novelty of the present research is this that the potential of V. zizanioides for Sb and As alone and their interactive accumulation are unaddressed. This is the first report about the interactive co-accumulation of Sb and As in V. zizanioides. Highest applied Sb and As contaminations significantly inhibited the plant growth. Applied Sb and As alone significantly increased their concentrations in the roots/shoot of V. zizanioides. While co-contamination of Sb and As steadily increased their concentrations, in the plant. The co-contamination of Sb and As revealed a positive correlation between the two, as they supplemented the uptake and accumulation of each other. The overall translocation (TF) and bioaccumulation factors (BF) of Sb in V. zizanioides, were 0.75 and 4. While the TF and BF of As in V. zizanioides, were 0.86 and 10. V. zizanioides proved as an effective choice for the phytoremediation and ecosystem restoration of Sb and As contaminated areas.


Asunto(s)
Antimonio/análisis , Arsénico/análisis , Chrysopogon/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , China , Chrysopogon/efectos de los fármacos , Hidroponía , Minería , Modelos Teóricos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo
18.
J Photochem Photobiol B ; 166: 246-251, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28011434

RESUMEN

The increase in the severe infectious diseases and resistance of the majority of the bacterial pathogens to the available drug is a serious problem now a day. In order to overcome this problem it is necessary to develop new therapeutic agents which are non-toxic and more effective to inhibit these microbial pathogens. For this purpose the plant extract of highly active medicinal plant, Taraxacum laevigatum was used for the synthesis of platinum nanoparticles (PtNPs) to enhance its bio-activities. The surface plasmon resonance peak appeared at 283nm clearly represent the formation of PtNPs. The results illustrate that the bio-synthesized PtNPs were uniformly dispersed, small sized (2-7nm) and spherical in shape. The green synthesized PtNPs were characterized by UV-vis spectroscopy, XRD, TEM, SEM, EDX, DLS and FTIR. These nanoparticles were tested against gram positive bacteria (Bacillus subtilis) and gram negative bacteria (Pseudomonas aeruginosa). The bio-synthesized PtNPs were examined to be more effective against both of the bacteria. The results showed, that the zone of inhibition of PtNPs against P. aeruginosa was 15 (±0.5) mm and B. subtilis was 18 (±0.8) mm. The most significant outcome of this examination is that PtNPs exhibited strong antibacterial activity against P. aeruginosa and B. subtilis which have strong defensive system against several antibiotics.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Fitoquímicos/síntesis química , Platino (Metal)/química , Técnicas In Vitro , Microscopía Electrónica , Análisis Espectral , Difracción de Rayos X
19.
J Photochem Photobiol B ; 153: 261-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26479585

RESUMEN

The silver nanoparticles (AgNPs) were green synthesized using Cirsium arvense plant extract as a reducing and stabilizing agent, with superior photo inactivation activity against Escherichia coli (E. coli). The synthesized AgNPs had crystalline structure and were characterized by UV-vis spectroscopy, XRD, HRTEM, SEM, EDX and FT-IR. The formation of nanoparticles was observed at different pH and different plant extract concentrations and it was found that at higher pH (pH>6) and at lower concentration (10 mL), the reducing and stabilizing efficiency of plant extract was increased. The synthesized AgNPs had small size (<15 nm) and spherical shape. The AgNPs were evaluated for antibacterial activity against E. coli. Before transferring it to antibacterial activity, it was placed under visible light for 120 min. The same experiment was performed in dark as a control medium. The photo irradiated AgNPs were observed to be more effective against E. coli. The results showed, that the diameter of zone of inhibition of visible light irradiated AgNPs against E. coli was 23 (±0.5)mm and in dark was 11 (±0.4)mm.


Asunto(s)
Escherichia coli/efectos de los fármacos , Luz , Nanopartículas del Metal , Plata/farmacología , Cirsium/química , Cirsium/metabolismo , Escherichia coli/efectos de la radiación , Concentración de Iones de Hidrógeno , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Extractos Vegetales/química , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...