Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6984, 2024 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523189

RESUMEN

Acne is a prevalent dermatological disease, with high global incidence, and is a health menace. The current study aimed to isolate and characterize the anaerobic bacteria responsible for the condition. Causes of a total of 70 acne-based bacterium isolates obtained from patients of mild, moderate, and severe acne, 24 were Clostridium innocuum, 21 were Lactobacillus plantarum, 13 were Anaerococcus prevotii, and 12 were Peptoniphilus asaccharolyticus. Nearly 69% of males were suffering, while the rest were females at 31%. The 15-30 years old age group was the most affected. The gold/alginate nanoparticles' nanopreparation (GANPs) produced from chloroauric acid and sodium alginate was an effective treatment against the acne conditions under the experimental conditions. The nanopreparation exhibited significant inhibitory activity against anaerobic bacterial isolates, with a minimum inhibitory concentration of 200 µg/ml for A. prevotii and P. asaccharolyticus, and 400 µg/ml for C. innocuum and L. plantarum. The in vitro efficacy of the GANPs on human blood parameters was also assessed. The concurrent results suggested potential antibacterial activity and hemocompatibility of the product, which has promise to be used as a successful antibacterial agent for acne.


Asunto(s)
Acné Vulgar , Bacterias Anaerobias , Masculino , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Alginatos/farmacología , Antibacterianos/farmacología , Acné Vulgar/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
2.
Nanomedicine (Lond) ; 18(25): 1839-1854, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37982771

RESUMEN

Aims: To synthesize a silver-cored nanosuspension utilizing Ziziphus spina-christi fresh-leaf extract and evaluate their antimicrobial activity against multidrug-resistant pathogenic microbes. Materials and Methods: The prepared nanosuspension was analyzed by spectro-analytical techniques and tested for antimicrobial activity and resistance to biofilm formation. The leaf extract and nanosuspension were tested separately and together as a mixture. Results: Constituent nanoparticles were average-sized (∼34 nm) and were active against both Gram-positive and Gram-negative microbes and yeast. Candida albicans showed a 24.50 ± 1.50 mm inhibition zone, followed by Escherichia coli and Staphylococcus aureus. Increased bioactivity with the highest multifold increments, 150%, for erythromycin against all tested microbes was observed. Carbenicillin and trimethoprim showed 166%- and 300%-fold increments for antimicrobial activity against Pseudomonas aeruginosa, respectively. Conclusion: The nanosuspension exhibited strong potential as an antimicrobial agent and overcame multidrug resistance.


Ziziphus spina-christi leaf extract-coated silver nanoparticles were synthesized using an environment-friendly method, and the preparation was effective against Escherichia coli, Staphylococcus aureus and Candida albicans. The prepared formulation showed increased antimicrobial activity at a 150­300% increase compared with leaf extract-only activity. The prepared suspension was also active against Pseudomonas aeruginosa, the multidrug-resistant microbe, and has the potential to treat drug-resistant microbial infections.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Ziziphus , Plata/farmacología , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Resistencia a Múltiples Medicamentos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Nanomedicine (Lond) ; 18(11): 875-887, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37470184

RESUMEN

Aim: The cytotoxic effects of graphene oxide nanoparticles (GONPs) using MTT assays, observance of apoptotic markers, and oxidative stress were outlined. Materials & methods: Rat embryonic fibroblasts (REFs) and human epithelial breast cells (HBLs) were used at 250, 500 and 750 µg/ml concentrations. Results: Significant cytotoxic and apoptotic effects were observed. Analyses of CYP2E1 and malondialdehyde concentrations in REF and HBL-100 cell lines after exposing to GONPs confirmed the nanomaterials toxicity. However, the glutathione levels in REF and HBL-100 cell lines showed a substantial reduction compared with the control. The cytochrome CYP2E1, glutathione, malondialdehyde and caspase-3 alterations provided a plausible interlinked relationship. Conclusion: The study confirmed the GONPs cytotoxic effects on REF and HBL-100 cell lines. The outcome suggested caution in wide-spread applications of GONPs, which could have implications for occupational health also.


Asunto(s)
Antineoplásicos , Citocromo P-450 CYP2E1 , Humanos , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacología , Apoptosis , Estrés Oxidativo , Antineoplásicos/farmacología , Glutatión/metabolismo , Mitocondrias/metabolismo , Malondialdehído/metabolismo , Supervivencia Celular
4.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119486, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172765

RESUMEN

Bacterial-extracellular-vesicles (BEVs) derived from Escherichia coli, strain-A5922, were used as a therapeutic tool to treat colon cancer cells, HT-29. BEVs induced oxidative stress, and observed mitochondrial autophagy, known as mitophagy, were crucial in initiation of treatment. The mitophagy, induced by the BEVs in HT-29 cells, produced adenocarcinomic cytotoxicity, and stopped the cells growth. The trigger for mitophagy, and an increase in productions of reactive oxygen species led to cellular oxidative stress, that eventually led to cells death. A reduction in the mitochondrial membrane potential, and an increase in the PINK1 expressions confirmed the oxidative stress involvements. The BEVs triggered cytotoxicity, and mitophagy in the HT-29 carcinoid cells, channelized through the Akt/mTOR pathways connecting the cellular oxidative stress, effectively played its part to cause cells death. These findings substantiated the BEVs' potential as a plausible tool for treating, and possibly preventing the colorectal cancer.


Asunto(s)
Neoplasias del Colon , Vesículas Extracelulares , Humanos , Células HT29 , Mitofagia , Estrés Oxidativo , Serina-Treonina Quinasas TOR
5.
Drug Dev Ind Pharm ; 49(3): 1-12, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37074796

RESUMEN

BACKGROUND: Ginkgo biloba (GB) leaves extract is known to possess potent antioxidants and other bioactivities such as improved skin conditions and rejuvenation. OBJECTIVE: This study aimed to develop a cosmeceutical preparation to utilize the strong antioxidant potential of GB leaves as part of the skincare formulation. METHODS: Cream incorporated GB (GBC) was prepared by mixing the obtained extract with stearic acid-sodium hydroxide components in an emulsion format. The obtained GBC was characterized for GB contents, uniformity, pH, compatibility, stability, and skin's human application. RESULTS: A homogeneous, physically, and chemically stable, with pH near the skin pH and shiny cream, was obtained. The prepared cream was easy to rub and pearly in appearance. It was effective and safe during the two-week trial conducted on human volunteers according to clinical trial registry protocols. The cream scavenged free radicals in DPPH assay tests. The cream incorporated GB made the skin more spirited and tauter. Furthermore, the wrinkles were reduced and the skin was renewed vigor. CONCLUSION: The GBC worked at the topical level and provided benefits when applied daily for the trial duration. The formulation also provided visually observable anti-wrinkle effects on the skin, with visible improvements in the skin's shape and texture. The prepared cream can be used to rejuvenate the skin.


Asunto(s)
Cosmecéuticos , Envejecimiento de la Piel , Humanos , Cosmecéuticos/farmacología , Ginkgo biloba , Rejuvenecimiento , Voluntarios Sanos , Crema para la Piel , Extractos Vegetales/farmacología , Antioxidantes/farmacología
6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37111339

RESUMEN

Combination of bovine serum albumin with microemulsions as constituting ingredient biopolymer has long been regarded an innovative method to address the surface functionalization and stability issues in the targeted payload deliveries, thereupon producing effectively modified microemulsions, which are superior in loading capacity, transitional and shelf-stability, as well as site-directed/site-preferred delivery, has become a favored option. The current study aimed to develop an efficient, suitable and functional microemulsion system encapsulating sesame oil (SO) as a model payload towards developing an efficient delivery platform. UV-VIS, FT-IR, and FE-SEM were used to characterize, and analyze the developed carrier. Physicochemical properties assessments of the microemulsion by dynamic light scattering size distributions, zeta-potential, and electron micrographic analyses were performed. The mechanical properties for rheological behavior were also studied. The HFF-2 cell line and hemolysis assays were conducted to ascertain the cell viability, and in vitro biocompatibility. The in vivo toxicity was determined based on a predicted median lethal dose (LD50) model, wherein the liver enzymes' functions were also tested to assess and confirm the predicted toxicity.

7.
Plants (Basel) ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904003

RESUMEN

Plants of the genus Tylophora have commonly been used in traditional medicine in various communities, especially in the tropical and subtropical regions of climatic zones. Of the nearly 300 species reported in the Tylophora genus, eight are primarily used in various forms to treat a variety of bodily disorders based on the symptoms. Certain plants from the genus have found use as anti-inflammatory, anti-tumor, anti-allergic, anti-microbial, hypoglycemic, hypolipidemic, anti-oxidant, smooth muscle relaxant, immunomodulatory, and anti-plasmodium agents, as well as free-radical scavengers. Pharmacologically, a few plant species from the genus have exhibited broad-spectrum anti-microbial and anti-cancer activity, which has been proven through experimental evaluations. Some of the plants in the genus have also helped in alcohol-induced anxiety amelioration and myocardial damage repair. The plants belonging to the genus have also shown diuretic, anti-asthmatic, and hepato-protective activities. Tylophora plants have afforded diverse structural bases for secondary metabolites, mainly belonging to phenanthroindolizidine alkaloids, which have been found to treat several diseases with promising pharmacological activity levels. This review encompasses information on various Tylophora species, their distribution, corresponding plant synonyms, and chemical diversity of the secondary metabolic phytochemicals as reported in the literature, together with their prominent biological activities.

8.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982245

RESUMEN

Halophytes and xerophytes, plants with adequate tolerance to high salinity with strong ability to survive in drought ecosystem, have been recognized for their nutritional and medicinal values owing to their comparatively higher productions of secondary metabolites, primarily the phenolics, and the flavonoids, as compared to the normal vegetation in other climatic regions. Given the consistent increases in desertification around the world, which are associated with increasing salinity, high temperature, and water scarcity, the survival of halophytes due to their secondary metabolic contents has prioritized these plant species, which have now become increasingly important for environmental protection, land reclamation, and food and animal-feed security, with their primary utility in traditional societies as sources of drugs. On the medicinal herbs front, because the fight against cancer is still ongoing, there is an urgent need for development of more efficient, safe, and novel chemotherapeutic agents, than those currently available. The current review describes these plants and their secondary-metabolite-based chemical products as promising candidates for developing newer cancer therapeutics. It further discusses the prophylactic roles of these plants, and their constituents in prevention and management of cancers, through an exploration of their phytochemical and pharmacological properties, with a view on immunomodulation. The important roles of various phenolics and structurally diverse flavonoids as major constituents of the halophytes in suppressing oxidative stress, immunomodulation, and anti-cancer effects are the subject matter of this review and these aspects are outlined in details.


Asunto(s)
Neoplasias , Plantas Tolerantes a la Sal , Animales , Plantas Tolerantes a la Sal/metabolismo , Ecosistema , Estrés Oxidativo , Recursos Naturales , Inmunomodulación , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control
9.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36978368

RESUMEN

The current study aimed to investigate the phytochemical contents and antioxidant, antimicrobial, and antibiofilm activities of four halophytic plants, namely, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, native to central Saudi Arabia. The alcoholic extract of E. chamaesyce was found to be the most potent in various bioactivities-based evaluations and rich in polyphenols and flavonoid secondary metabolites, with 68.0 mg/g and 39.23 mg/g gallic acid and quercetin equivalents, respectively. Among all plants' extracts, the alcoholic extract of E. chamaesyce had the highest DPPH scavenging and metal chelating antioxidant activities at 74.15 Trolox equivalents and 16.28 EDTA equivalents, respectively. The highest antimicrobial activity of E. chamaesyce extract was found to be against Shigella flexneri, with a mean zone of inhibition diameter of 18.1 ± 0.2 mm, whereas the minimum inhibitory concentration, minimum biocidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration values were 12.5, 25, 25, and 50 mg/mL, respectively. The LC-ESI-MS/MS analysis of the E. chamaesyce extract showed the presence of six flavonoids and ten phenolic constituents. The in silico binding of the E. chamaesyce extract's constituents to Staphylococcus aureus tyrosyl-tRNA synthetase enzyme displayed -6.2 to -10.1 kcal/mol binding energy values, suggesting that these constituents can contribute to the antimicrobial properties of the plant extract, making it an essential medicinal ingredient. In conclusion, these results warrant further investigation to standardize the antimicrobial profiles of these plant extracts.

10.
Foods ; 12(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36900526

RESUMEN

Applications of analytical quality by design (QbD) approach for developing HPLC (High Performance Liquid Chromatography) methods for food components assays, and separations of complex natural product mixtures, are still limited. The current study developed and validated, for the first time, a stability-indicating HPLC method for simultaneous determinations of curcuminoids in Curcuma longa extracts, tablets, capsules, and curcuminoids' forced degradants under different experimental conditions. Towards separation strategy, critical method parameters (CMPs) were defined as the mobile phase solvents' percent-ratio, the pH of the mobile phase, and the stationary-phase column temperature, while the peaks resolution, retention time, and the number of theoretical plates were recognized as the critical method attributes (CMAs). Factorial experimental designs were used for method development, validation, and robustness evaluation of the procedure. The Monte Carlo simulation evaluated the developing method's operability, and that ensured the concurrent detections of curcuminoids in natural extracts, commercial-grade pharmaceutical dosage-forms, and the forced degradants of the curcuminoids in a single mixture. The optimum separations were accomplished using the mobile phase, consisting of an acetonitrile-phosphate buffer (54:46 v/v, 0.1 mM) with 1.0 mL/min flow rate, 33 °C column temperature, and 385 nm wavelength for UV (Ultra Violet) spectral detections. The method is specific, linear (R2 ≥ 0.999), precise (% RSD < 1.67%), and accurate (% recovery 98.76-99.89%), with LOD (Limit of Detection) and LOQ (Limit of Quantitation) at 0.024 and 0.075 µg/mL for the curcumin, 0.0105 µg/mL and 0.319 µg/mL for demethoxycurcumin, and 0.335 µg/mL and 1.015 µg/mL for the bisdemethoxycurcumin, respectively. The method is compatible, robust, precise, reproducible, and accurately quantifies the composition of the analyte mixture. It exemplifies the use of the QbD approach in acquiring design details for developing an improved analytical detection and quantification method.

11.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768593

RESUMEN

Natural product-based structural templates have immensely shaped small molecule drug discovery, and new biogenic natural products have randomly provided the leads and molecular targets in anti-analgesic activity spheres. Pain relief achieved through opiates and non-steroidal anti-inflammatory drugs (NSAIDs) has been under constant scrutiny owing to their tolerance, dependency, and other organs toxicities and tissue damage, including harm to the gastrointestinal tract (GIT) and renal tissues. A new, 3',4',6'-triacetylated-glucoside, 2-O-ß-D-(3',4',6'-tri-acetyl)-glucopyranosyl-3-methyl pentanoic acid was obtained from Ficus populifolia, and characterized through a detailed NMR spectroscopic analysis, i.e., 1H-NMR, 13C-DEPT-135, and the 2D nuclear magnetic resonance (NMR) correlations. The product was in silico investigated for its analgesic prowess, COX-2 binding feasibility and scores, drug likeliness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, possible biosystem's toxicity using the Discovery Studio®, and other molecular studies computational software programs. The glycosidic product showed strong potential as an analgesic agent. However, an in vivo evaluation, though at strong levels of pain-relieving action, was estimated on the compound's extract owing to the quantity and yield issues of the glycosidic product. Nonetheless, the F. populifolia extract showed the analgesic potency in eight-week-old male mice on day seven of the administration of the extract's dose in acetic acid-induced writhing and hot-plate methods. Acetic acid-induced abdominal writhing for all the treated groups decreased significantly (p < 0.0001), as compared to the control group (n = 6) by 62.9%, 67.9%, and 70.9% of a dose of 100 mg/kg (n = 6), 200 mg/kg (n = 6), and 400 mg/kg (n = 6), respectively. Similarly, using the analgesia meter, the reaction time to pain sensation increased significantly (p < 0.0001), as compared to the control (n = 6). The findings indicated peripheral and central-nervous-system-mediated analgesic action of the product obtained from the corresponding extract.


Asunto(s)
Ficus , Animales , Masculino , Ratones , Ácido Acético/uso terapéutico , Analgésicos/uso terapéutico , Ficus/química , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Extractos Vegetales/química , Ácidos Pentanoicos/química
12.
Antibiotics (Basel) ; 11(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36551448

RESUMEN

Bacterial drug resistance to antibiotics is growing globally at unprecedented levels, and strategies to overcome treatment deficiencies are continuously developing. In our approach, we utilized metal nanoparticles, silver nanoparticles (AgNPs), known for their wide spread and significant anti-bacterial actions, and the high-dose regimen of lincosamide antibiotic, lincomycin, to demonstrate the efficacy of the combined delivery concept in combating the bacterial resistance. The anti-bacterial actions of the AgNPs and the lincomycin as single entities and as part of the combined mixture of the AgNPs-lincomycin showed improved anti-bacterial biological activity in the Bacillus cereus and Proteus mirabilis microorganisms in comparison to the AgNPs and lincomycin alone. The comparison of the anti-biofilm formation tendency, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) suggested additive effects of the AgNPs and lincomycin combination co-delivery. The AgNPs' MIC at 100 µg/mL and MBC at 100 µg/mL for both Bacillus cereus and Proteus mirabilis, respectively, together with the AgNPs-lincomycin mixture MIC at 100 + 12.5 µg/mL for Bacillus cereus and 50 + 12.5 µg/mL for Proteus mirabilis, confirmed the efficacy of the mixture. The growth curve test showed that the AgNPs required 90 min to kill both bacterial isolates. The freshly prepared and well-characterized AgNPs, important for the antioxidant activity levels of the AgNPs material, showed radical scavenging potential that increased with the increasing concentrations. The DPPH's best activity concentration, 100 µg/mL, which is also the best concentration exhibiting the highest anti-bacterial zone inhibition, was chosen for evaluating the combined effects of the antibiotic, lincomycin, and the AgNPs. Plausible genotoxic effects and the roles of AgNPs were observed through decreased Bla gene expressions in the Bacillus cereus and BlaCTX-M-15 gene expressions in the Proteus mirabilis.

13.
ACS Omega ; 7(50): 46629-46639, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36570308

RESUMEN

Six flavonoids present in Pulicaria jaubertii, i.e., 7,3'-di-O-methyltaxifolin (1), 3'-O-methyltaxifolin (2), 7-O-methyltaxifolin (3), taxifolin (4), 3-O-methylquercetin (5), and quercetin (6), were tested for their anticancer activities. The methylated flavonoids, compounds 1-3 and 5, were evaluated for their anticancer activities in comparison to the non-methylated parent flavonoids taxifolin (4) and quercetin (6). The structures of the known compounds were reconfirmed by spectral analyses using 1H and 13C NMR data comparisons and HRMS spectrometry. The anticancer activity of these compounds was evaluated in colon cancer, HCT-116, and noncancerous, HEK-293, cell lines using the MTT antiproliferative assays. The caspase-3 and caspase-9 expressions and DAPI (4', 6-diamidino-2-phenylindole) staining assays were used to evaluate the apoptotic activity. All the compounds exhibited antiproliferative activity against the HCT-116 cell line with IC50 values at 33 ± 1.25, 36 ± 2.25, 34 ± 2.15, 32 ± 2.35, 34 ± 2.65, and 36 ± 1.95 µg/mL for compounds 1 to 6, respectively. All the compounds produced a significant reduction in HCT-116 cell line proliferation, except compounds 2 and 6. The viability of the HEK-293 normal cells was found to be significantly higher than the viability of the cancerous cells at all of the tested concentrations, thus suggesting that all the compounds have better inhibitory activity on the cancer cell line. Apoptotic features such as chromatin condensation and nuclear shrinkage were also induced by the compounds. The expression of caspase-3 and caspase-9 genes increased in HCT-116 cell lines after 48 h of treatment, suggesting cell death by the apoptotic pathways. The molecular docking studies showed favorable binding affinity against different pro- and antiapoptotic proteins by these compounds. The docking scores were minimum as compared to the caspase-9, caspase-3, Bcl-xl, and JAK2.

14.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430823

RESUMEN

Ionic liquids are a potent class of organic compounds exhibiting unique physico-chemical properties and structural compositions that are different from the classical dipolar organic liquids. These molecules have found diverse applications in different chemical, biochemical, biophysical fields, and a number of industrial usages. The ionic liquids-based products and procedural applications are being developed for a number of newer industrial purposes, and academic uses in nanotechnology related procedures, processes, and products, especially in nanobiotechnology and nanomedicine. The current article overviews their uses in different fields, including applications, functions, and as parts of products and processes at primary and advanced levels. The application and product examples, and prospects in various fields of nanotechnology, domains of nanosystem syntheses, nano-scale product development, the process of membrane filtering, biofilm formation, and bio-separations are prominently discussed. The applications in carbon nanotubes; quantum dots; and drug, gene, and other payload delivery vehicle developments in the nanobiotechnology field are also covered. The broader scopes of applications of ionic liquids, future developmental possibilities in chemistry and different bio-aspects, promises in the newer genres of nanobiotechnology products, certain bioprocesses controls, and toxicity, together with emerging trends, challenges, and prospects are also elaborated.


Asunto(s)
Líquidos Iónicos , Nanotubos de Carbono , Líquidos Iónicos/química , Nanotecnología , Nanomedicina , Compuestos Orgánicos
15.
Sci Rep ; 12(1): 17203, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229515

RESUMEN

Zinc oxide-silver (ZnO-Ag), and zinc oxide-gold (ZnO-Au) nano-composites were prepared through wet chemical process and laced into single-walled carbon nanotubes (SWCNTs) to yield ZnO-Ag-SWCNTs, and ZnO-Au-SWCNTs hybrids. These nano-composite-laced SWCNTs hybrids were characterized using Raman spectroscopic, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. The hybrids were evaluated for their effects on phagocytic cells and bactericidal activity against the gram-negative bacteria E. coli. Their phagocytic cell activities and intracellular killing actions were found to be significantly increased, as the ZnO-Ag-SWCNTs and ZnO-Au-SWCNTs nano-hybrids induced widespread clearance of Escherichia coli. An increase in the production of reactive oxygen species (ROS) also led to upregulated phagocytosis, which was determined mechanistically to involve the phagocyte NADPH oxidase (NOX2) pathway. The findings emphasized the roles of ZnO-Ag- and ZnO-Au-decorated SWCNTs in the prevention of bacterial infection by inhibiting biofilm formation, showing the potential to be utilized as catheter coatings in the clinic.


Asunto(s)
Nanotubos de Carbono , Óxido de Zinc , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/metabolismo , Oro/farmacología , Pruebas de Sensibilidad Microbiana , NADPH Oxidasas , Nanotubos de Carbono/química , Oxidorreductasas , Fagocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Plata/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología
16.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296877

RESUMEN

Considerable efforts have been directed towards development of nano-structured carriers to overcome the limitations of anticancer drug, doxorubicin's, delivery to various cancer sites. The drug's severe toxicity to cardio and hepatic systems, low therapeutic outcomes, inappropriate dose-demands, metastatic and general resistance, together with non-selectivity of the drug have led to the development of superparamagnetic iron oxide nanoparticles (SPIONs)-based drug delivery modules. Nano-scale polymeric co-encapsulation of the drug, doxorubicin, with SPIONs, the SPIONs surface end-groups' cappings with small molecular entities, as well as structural modifications of the SPIONs' surface-located functional end-groups, to attach the doxorubicin, have been achieved through chemical bonding by conjugation and cross-linking of natural and synthetic polymers, attachments of SPIONs made directly to the non-polymeric entities, and attachments made through mediation of molecular-spacer as well as non-spacer mediated attachments of several types of chemical entities, together with the physico-chemical bondings of the moieties, e.g., peptides, proteins, antibodies, antigens, aptamers, glycoproteins, and enzymes, etc. to the SPIONs which are capable of targeting multiple kinds of cancerous sites, have provided stable and functional SPIONs-based nano-carriers suitable for the systemic, and in vitro deliveries, together with being suitable for other biomedical/biotechnical applications. Together with the SPIONs inherent properties, and ability to respond to magnetic resonance, fluorescence-directed, dual-module, and molecular-level tumor imaging; as well as multi-modular cancer cell targeting; magnetic-field-inducible drug-elution capacity, and the SPIONs' magnetometry-led feasibility to reach cancer action sites have made sensing, imaging, and drug and other payloads deliveries to cancerous sites for cancer treatment a viable option. Innovations in the preparation of SPIONs-based delivery modules, as biocompatible carriers; development of delivery route modalities; approaches to enhancing their drug delivery-cum-bioavailability have explicitly established the SPIONs' versatility for oncological theranostics and imaging. The current review outlines the development of various SPIONs-based nano-carriers for targeted doxorubicin delivery to different cancer sites through multiple methods, modalities, and materials, wherein high-potential nano-structured platforms have been conceptualized, developed, and tested for, both, in vivo and in vitro conditions. The current state of the knowledge in this arena have provided definite dose-control, site-specificity, stability, transport feasibility, and effective onsite drug de-loading, however, with certain limitations, and these shortcomings have opened the field for further advancements by identifying the bottlenecks, suggestive and plausible remediation, as well as more clear directions for future development.

17.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144488

RESUMEN

Glioblastoma multiforme (GBM) is considered to be one of the most serious version of primary malignant tumors. Temozolomide (TMZ), an anti-cancer drug, is the most common chemotherapeutic agent used for patients suffering from GBM. However, due to its inherent instability, short biological half-life, and dose-limiting characteristics, alternatives to TMZ have been sought. In this study, the TMZ-loaded PLGA nanoparticles were prepared by employing the emulsion solvent evaporation technique. The prepared TMZ-PLGA-NPs were characterized using FT-IR, zeta potential analyses, XRD pattern, particle size estimation, TEM, and FE-SEM observations. The virotherapy, being safe, selective, and effective in combating cancer, was employed, and TMZ-PLGA-NPs and oncolytic Newcastle Disease Virus (NDV) were co-administered for the purpose. An AMHA1-attenuated strain of NDV was propagated in chicken embryos, and the virus was titrated in Vero-slammed cells to determine the infective dose. The in vitro cytotoxic effects of the TMZ, NDV, and the TMZ-PLGA-NPs against the human glioblastoma cancer cell line, AMGM5, and the normal cell line of rat embryo fibroblasts (REFs) were evaluated. The synergistic effects of the nano-formulation and viral strain combined therapy was observed on the cell lines in MTT viability assays, together with the Chou-Talalay tests. The outcomes of the in vitro investigation revealed that the drug combinations of NDV and TMZ, as well as NDV and TMZ-PLGA-NPs exerted the synergistic enhancements of the antitumor activity on the AMGM5 cell lines. The effectiveness of both the mono, and combined treatments on the capability of AMGM5 cells to form colonies were also examined with crystal violet dyeing tests. The morphological features, and apoptotic reactions of the treated cells were investigated by utilizing the phase-contrast inverted microscopic examinations, and acridine orange/propidium iodide double-staining tests. Based on the current findings, the potential for the use of TMZ and NDV as part of a combination treatment of GBM is significant, and may work for patients suffering from GBM.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Virus Oncolíticos , Naranja de Acridina , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Embrión de Pollo , Emulsiones/uso terapéutico , Violeta de Genciana , Glioblastoma/tratamiento farmacológico , Humanos , Nanopartículas/química , Virus de la Enfermedad de Newcastle , Propidio , Ratas , Solventes , Espectroscopía Infrarroja por Transformada de Fourier , Temozolomida/farmacología
18.
Nanomaterials (Basel) ; 12(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36014673

RESUMEN

Silver nanoparticles (AgNPs) have demonstrated numerous physicochemical, biological, and functional properties suitable for biomedical applications, including antibacterial and drug carrier properties. In the present study, the antibiotic, ciprofloxacin (CIP), was loaded onto AgNPs, which were synthesized via the chemical reduction method, thereby enhancing CIP's antibacterial activity against Gram-negative (Acinetobacter baumannii and Serratia marcescens) and Gram-positive (Staphylococcus aureus) bacterial strains. Polyethylene glycol-400 (PEG) was used to prepare an AgNPs-PEG conjugate with enhanced stability and to act as the linker between CIP and AgNPs, to produce the novel nanocomposite, AgNPs-PEG-CIP. The prepared AgNPs and their conjugates were characterized by ultraviolet-visible spectrophotometry, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, zeta potential analysis, and dynamic light scattering techniques. The inhibitory activity of AgNPs and their conjugates on the growths of pathogenic bacteria was assessed using the well-diffusion method. The results showed the enhanced antibacterial effects of AgNPs-CIP compared to CIP alone. The AgNPs-PEG-CIP nanocomposite showed excellent inhibitory effects against bacterial isolates, with its inhibition zones diameters reaching 39, 36, and 40 mm in S. aureus, A. baumannii, and S. marcescens, respectively. The minimum inhibitory concentration and minimum bactericidal concentration of fogNPs and their conjugates and their antibiofilm effects were also determined. The antioxidant potentials of AgNPs and their conjugates, tested via their 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging ability, showed that the activity increased with increasing AgNPs concentration and the addition of the PEG and/or CIP. Overall, according to the results obtained in the present study, the new nanocomposite, AgNPs-PEG-CIP, showed the highest antibacterial, antibiofilm, and antioxidant activity against the pathogenic bacteria tested, compared to CIP alone. The preparation has high clinical potential for prospective use as an antibacterial agent.

19.
Molecules ; 27(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889394

RESUMEN

The purpose of this study was to evaluate the potential of a newly modified cyclodextrin derivative, water-soluble ß-cyclodextrin-epichlorohydrin (ß-CD), as an effective drug carrier to enhance the poor solubility and bioavailability of galangin (GAL), a poorly water-soluble model drug. In this regard, inclusion complexes of GAL/ß-CDP were prepared. UV-VIS spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), X-ray crystallography (XRD), zeta potential analysis, particle size analysis, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) were applied to characterize the synthesized GAL/ß-CD. Michigan Cancer Foundation-7 (MCF-7; human breast cancer cells) and rat embryo fibroblast (REF; normal cells) were employed to examine the in vitro cytotoxic effects of GAL/ß-CD using various parameters. The dye-based tests of MTT and crystal violet clearly exhibited that GAL/ß-CD-treated cells had a reduced proliferation rate, an influence that was not found in the normal cell line. The cells' death was found to follow apoptotic mechanisms, as revealed by the dye-based test of acridine orange/ethidium bromide (AO/EtBr), with the involvement of the mitochondria via caspase-3-mediated events, as manifested by the Rh 123 test. We also included a mouse model to examine possible in vivo toxic effects of GAL/ß-CD. It appears that the inclusion complex does not have a significant influence on normal cells, as indicated by serum levels of kidney and liver enzymatic markers, as well as thymic and splenic mass indices. A similar conclusion was reached on the histological level, as manifested by the absence of pathological alterations in the liver, kidney, thymus, spleen, heart, and lung.


Asunto(s)
Neoplasias de la Mama , beta-Ciclodextrinas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Rastreo Diferencial de Calorimetría , Portadores de Fármacos , Femenino , Flavonoides , Humanos , Ratones , Ratas , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Difracción de Rayos X , beta-Ciclodextrinas/química
20.
Plants (Basel) ; 11(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35631719

RESUMEN

The phenanthroindolizidine alkaloid (-)-tylophorine has been reported for its significant anticancer activity working through different biomechanistic pathways. The current study aimed to evaluate the anticancer activity of phenanthroindolizidine alkaloids isolated from Tylophora indica. Six phenanthroindolizidine alkaloid (compounds 1-6) in addition to septicine (7), chlorogenic acid (8), and chlorogenic acid methyl ester (9) were isolated from Tylophora indica using different chromatographic techniques including vacuum liquid chromatography (VLC) and preparative high performance liquid chromatography (HPLC). The isolated compounds structures' were determined using various spectro-analytical techniques, i.e., 1H-NMR, 13C-NMR, and mass spectrometry. The isolates' structural stereochemistry and structural geometries were determined with the help of chiroptical techniques together with comparisons with the available standard samples. The in vitro anti-proliferative activity on three different cell lines, MCF-7, HepG2, and HCT-116 were evaluated. Among all the isolated compounds, tylophorinidine (5) was the most active cytotoxic agent with the lowest IC50 values at 6.45, 4.77, and 20.08 µM against MCF-7, HepG2, and HCT-116 cell lines, respectively. The bioactivities were also validated by the in vitro kinase receptors inhibition assay. Compound (5) also exhibited the highest activity with lowest IC50 values (0.6 and 1.3 µM against the Aurora-A and Aurora-B enzymes, respectively), as compared with all the isolated alkaloidal products. The structure activity relationship on the molecular properties, molecular attributes, and bioactivity levels were analyzed, interrelated, and the molecular docking studies on two different receptors, Aurora-A and Aurora-B, were determined, which provided the confirmations of the bioactivity with receptor-ligand geometric disposition, energy requirements, lipophilicity, and detailed the binding pharmacophore involvements responsible for bioactivity elicitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...