Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2401102, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573909

RESUMEN

Exploitation of metal-organic framework (MOF) materials as active electrodes for energy storage or conversion is reasonably challenging owing to their poor robustness against various acidic/basic conditions and conventionally low electric conductivity. Keeping this in perspective, herein, a 3D ultramicroporous triazolate Fe-MOF (abbreviated as Fe-MET) is judiciously employed using cheap and commercially available starting materials. Fe-MET possesses ultra-stability against various chemical environments (pH-1 to pH-14 with varied organic solvents) and is highly electrically conductive (σ = 0.19 S m-1) in one fell swoop. By taking advantage of the properties mentioned above, Fe-MET electrodes give prominence to electrochemical capacitor (EC) performance by delivering an astounding gravimetric (304 F g-1) and areal (181 mF cm-2) capacitance at 0.5 A g-1 current density with exceptionally high cycling stability. Implementation of Fe-MET as an exclusive (by not using any conductive additives) EC electrode in solid-state energy storage devices outperforms most of the reported MOF-based EC materials and even surpasses certain porous carbon and graphene materials, showcasing superior capabilities and great promise compared to various other alternatives as energy storage materials.

2.
Ecol Evol ; 14(2): e10976, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343564

RESUMEN

Food is fundamental for the survival of organisms, governing growth, maintenance, and reproduction through the provision of essential macronutrients. However, access to food with optimum macronutrient composition, which will maximize the evolutionary fitness of an organism, is not always guaranteed. This leads to dietary mismatches with potential impacts on organismal performance. To understand the consequences of such dietary mismatches, we examined the effects of isocaloric diets varying in macronutrient composition on eight key organismal traits spanning across the lifespan of a large outbred Drosophila melanogaster population (n ~ 2500). Our findings reveal that carbohydrate-reduced isocaloric diets correlates to accelerated pre-adult development and boosts reproductive output without impacting pre-adult viability and body size. Conversely, an elevated dietary carbohydrate content correlated to reduced lifespan in flies, evidenced by accelerated functional senescence including compromised locomotor activity and deteriorating gut integrity. Furthermore, transcriptomic analysis indicated a substantial difference in gene regulatory landscapes between flies subject to high-carbohydrate versus high-protein diet, with elevated protein levels indicating transcriptomes primed for reduced synthesis of fatty acids. Taken together, our study helps advance our understanding of the effect of macronutrient composition on life history traits and their interrelations, offering critical insights into potential adaptive strategies that organisms might adopt against the continual dietary imbalances prevalent in the rapidly evolving environment.

3.
Dalton Trans ; 52(40): 14663-14675, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37791569

RESUMEN

Nowadays, supercapacitors are the most coveted eco-friendly and sustainable next-generation energy storage devices. In this regard, developing supercapacitors with high energy density and power density has always been a challenge for researchers. Herein, we have exploited an electroactive Co-containing metal-organic framework (Co-MOF) using cheap and commercially available starting materials under refluxing conditions and explored its energy storage properties in three- and two-electrode methods. The Co-MOF exhibited a specific capacitance of 425 F g-1 at 2 A g-1, maintaining a capacitance of ∼78% over 2200 successive charge-discharge cycles in a three-electrode system. The two-electrode asymmetric supercapacitor (ASC) using Co-MOF as the working electrode and as-synthesized p-phenylenediamine (PPD)-functionalized reduced graphene oxide (PPD-rGO) as the counter electrode divulged a specific capacitance of 72.5 F g-1 at 2 A g-1 current density with ∼70% capacitive retention after 2200 successive charge-discharge cycles over a broad potential window of 0-1.6 V. Moreover, the ASC demonstrated a maximum power density of 11.9 kW kg-1 at 10 A g-1 and a maximum energy density of 25.8 W h kg-1 at 2 A g-1 current density. Owing to the stable electrochemical redox (Co2+/Co3+)-mediated pseudocapacitive behavior of the Co-MOF and the high surface area and electrical conductivity of in situ generated PPD-intercalated rGO, the fabricated ASC unveiled high-performance supercapacitive behaviors. To investigate the practical applicability of this material, solid-state (ASC) devices were fabricated by employing the Co-MOF as the positive electrode and PPD-rGO as the negative electrode in a KOH-based gel electrolyte, which could power a commercially available light-emitting diode bulb (∼1.8 V) for several seconds. Therefore, the elucidated high electrochemical energy storage performance of the prepared Co-MOF makes it a very promising electrode material for supercapacitors.

4.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220236, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37778387

RESUMEN

During mammalian embryo development, pluripotent epiblast cells diversify into the three primary germ layers, which will later give rise to all fetal and adult tissues. These processes involve profound transcriptional and epigenetic changes that require precise coordination. Peptidylarginine deiminase IV (PADI4) is a transcriptional regulator that is strongly associated with inflammation and carcinogenesis but whose physiological roles are less well understood. We previously found that Padi4 expression is associated with pluripotency. Here, we examined the role of PADI4 in maintaining the multi-lineage differentiation potential of mouse embryonic stem (ES) cells. Using bulk and single-cell transcriptomic analyses of embryoid bodies (EBs) derived from Padi4 knock-out (Padi4-KO) mouse ES cells, we find that PADI4 loss impairs mesoderm diversification and differentiation of cardimyocytes and endothelial cells. Additionally, Padi4 deletion leads to concerted downregulation of genes associated with polarized growth, sterol metabolism and the extracellular matrix (ECM). This study indicates a requirement for Padi4 in the specification of the mesodermal lineage and reports the Padi4 associated transcriptome, providing a platform for understanding the physiological functions of Padi4 in development and homeostasis. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Asunto(s)
Células Endoteliales , Arginina Deiminasa Proteína-Tipo 4 , Transcriptoma , Animales , Ratones , Diferenciación Celular , Células Madre Embrionarias , Arginina Deiminasa Proteína-Tipo 4/genética
5.
J Infect Public Health ; 16(8): 1290-1300, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331277

RESUMEN

BACKGROUND: Modern response to pandemics, critical for effective public health measures, is shaped by the availability and integration of diverse epidemiological outbreak data. Tracking variants of concern (VOC) is integral to understanding the evolution of SARS-CoV-2 in space and time, both at the local level and global context. This potentially generates actionable information when integrated with epidemiological outbreak data. METHODS: A city-wide network of researchers, clinicians, and pathology diagnostic laboratories was formed for genome surveillance of COVID-19 in Pune, India. The genomic landscapes of 10,496 sequenced samples of SARS-CoV-2 driving peaks of infection in Pune between December-2020 to March-2022, were determined. As a modern response to the pandemic, a "band of five" outbreak data analytics approach was used. This integrated the genomic data (Band 1) of the virus through molecular phylogenetics with key outbreak data including sample collection dates and case numbers (Band 2), demographics like age and gender (Band 3-4), and geospatial mapping (Band 5). RESULTS: The transmission dynamics of VOCs in 10,496 sequenced samples identified B.1.617.2 (Delta) and BA(x) (Omicron formerly known as B.1.1.529) variants as drivers of the second and third peaks of infection in Pune. Spike Protein mutational profiling during pre and post-Omicron VOCs indicated differential rank ordering of high-frequency mutations in specific domains that increased the charge and binding properties of the protein. Time-resolved phylogenetic analysis of Omicron sub-lineages identified a highly divergent BA.1 from Pune in addition to recombinant X lineages, XZ, XQ, and XM. CONCLUSIONS: The band of five outbreak data analytics approach, which integrates five different types of data, highlights the importance of a strong surveillance system with high-quality meta-data for understanding the spatiotemporal evolution of the SARS-CoV-2 genome in Pune. These findings have important implications for pandemic preparedness and could be critical tools for understanding and responding to future outbreaks.


Asunto(s)
COVID-19 , Pandemias , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Filogenia , India/epidemiología , Genómica
6.
J Mol Evol ; 91(5): 616-627, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37341745

RESUMEN

Hox genes encode Homeodomain-containing transcription factors, which specify segmental identities along the anterior-posterior axis. Functional changes in Hox genes have been directly implicated in the evolution of body plans across the metazoan lineage. The Hox protein Ultrabithorax (Ubx) is expressed and required in developing third thoracic (T3) segments in holometabolous insects studied so far, particularly, of the order Coleoptera, Lepidoptera and Diptera. Ubx function is key to specify differential development of the second (T2) and T3 thoracic segments in these insects. While Ubx is expressed in the third thoracic segment in developing larvae of Hymenopteran Apis mellifera, the morphological differences between T2 and T3 are subtle. To identify evolutionary changes that are behind the differential function of Ubx in Drosophila and Apis, which are diverged for more than 350 million years, we performed comparative analyses of genome wide Ubx-binding sites between these two insects. Our studies reveal that a motif with a TAAAT core is a preferred binding site for Ubx in Drosophila, but not in Apis. Biochemical and transgenic assays suggest that in Drosophila, the TAAAT core sequence in the Ubx binding sites is required for Ubx-mediated regulation of two of its target genes studied here; CG13222, a gene that is normally upregulated by Ubx and vestigial (vg), whose expression is repressed by Ubx in T3. Interestingly, changing the TAAT site to a TAAAT site was sufficient to bring an otherwise unresponsive enhancer of the vg gene from Apis under the control of Ubx in a Drosophila transgenic assay. Taken together, our results suggest an evolutionary mechanism by which critical wing patterning genes might have come under the regulation of Ubx in the Dipteran lineage.

7.
Front Cell Dev Biol ; 9: 713282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368162

RESUMEN

Developmental processes have to be robust but also flexible enough to respond to genetic and environmental variations. Different mechanisms have been described to explain the apparent antagonistic nature of developmental robustness and plasticity. Here, we present a "self-sufficient" molecular model to explain the development of a particular flight organ that is under the control of the Hox gene Ultrabithorax (Ubx) in the fruit fly Drosophila melanogaster. Our model is based on a candidate RNAi screen and additional genetic analyses that all converge to an autonomous and cofactor-independent mode of action for Ubx. We postulate that this self-sufficient molecular mechanism is possible due to an unusually high expression level of the Hox protein. We propose that high dosage could constitute a so far poorly investigated molecular strategy for allowing Hox proteins to both innovate and stabilize new forms during evolution.

8.
Nat Commun ; 12(1): 2892, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001903

RESUMEN

Flying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


Asunto(s)
Proteína con Homeodominio Antennapedia/genética , Proteínas de Drosophila/genética , Vuelo Animal , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Proteína con Homeodominio Antennapedia/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dosificación de Gen , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo
9.
Int J Dev Biol ; 64(1-2-3): 159-165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32659004

RESUMEN

Differential specification of dorsal flight appendages, wing and haltere, in Drosophila provides an excellent model system to address a number of important questions in developmental biology at the levels of molecules, pathways, tissues, organs, organisms and evolution. Here we discuss the mechanism by which the Hox protein Ubx recognizes and regulates its downstream targets, implications of the same in growth control at cellular and organ level and finally the evolution of haltere from ancestral hindwings in other holometabolous insects.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/fisiología , Proteínas de Homeodominio/metabolismo , Organogénesis , Factores de Transcripción/metabolismo , Alas de Animales/embriología , Alas de Animales/fisiología , Animales , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...