Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Probl Cardiol ; 48(7): 101692, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36898595

RESUMEN

Over the past 2 decades, genome-editing technique has proven to be a robust editing method that revolutionizes the field of biomedicine. At the genetic level, it can be efficiently utilized to generate various disease-resistance models to elucidate the mechanism of human diseases. It also develops an outstanding tool and enables the generation of genetically modified organisms for the treatment and prevention of various diseases. The versatile and novel clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system mitigates the challenges of various genome editing techniques such as zinc-finger nucleases, and transcription activator-like effector nucleases. For this reason, it has become a ground-breaking technology potentially employed to manipulate the desired gene of interest. Interestingly, this system has been broadly utilized due to its tremendous applications for treating and preventing tumors and various rare disorders; however, its applications for treating cardiovascular diseases (CVDs) remain in infancy. More recently, 2 newly developed genome editing techniques, such as base editing and prime editing, have further broadened the accuracy range to treat CVDs under consideration. Furthermore, recently emerged CRISPR tools have been potentially applied in vivo and in vitro to treat CVDs. To the best of our knowledge, we strongly enlightened the applications of the CRISPR/Cas9 system that opened a new window in the field of cardiovascular research and, in detail, discussed the challenges and limitations of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Edición Génica , Humanos , Edición Génica/métodos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & control
2.
Anal Chim Acta ; 1245: 340847, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36737134

RESUMEN

Fluorescent carbon dots have been highly reported nanomaterials in recent times because of their excellent physio-chemical properties and various field of applications. Herein, a one-step hydrothermal approach was used to synthesize high biocompatible nitrogen and sulfur co-doped carbon dots, and examined their chemical sensing (Hg2+) and biological imaging properties. The N,S-CDs exhibited blue light, demonstrating a high quantum yield of up to 44.5% and excitation-independent fluorescent characteristics. Cytotoxicity was observed by CCK-8 assay using T-ca cells as a target source. Cell viability was recorded over 80% even after 7 days of treatment with a concentration up to 400 µg/mL, indicating low-toxicity of N,S-CDs. Notably, the bright blue fluorescence of N,S-CDs was quenched by introducing toxic Hg2+ ions into the solution. The detection limit was calculated to be about ∼3.5 nM, which is quite impressive compared to previous reports. Because of their low-toxicity, nano-size, and environment friendly properties, N,S-CDs could be excellent fluorescent agents for bio-imaging applications. The biological stability of fluorescent N,S-CDs was tested over time, and the findings were significant even after 8 days of incubation with T-ca cells. Because of good biocompatibility and bright fluorescence, N,S-CDs were suitable for in vivo imaging.


Asunto(s)
Mercurio , Puntos Cuánticos , Carbono/toxicidad , Carbono/química , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Nitrógeno/química , Azufre/química , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Mercurio/toxicidad
3.
Sci Rep ; 11(1): 20601, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663851

RESUMEN

In the present research, a novel mathematical model for the motion of cilia using non-linear rheological fluid in a symmetric channel is developed. The strength of analytical perturbation technique is employed for the solution of proposed physical process using mectachoronal rhythm based on Cilia induced flow for pseudo plastic nano fluid model by considering the low Reynolds number and long wave length approximation phenomena. The role of ciliary motion for the fluid transport in various animals is explained. Analytical expressions are gathered for stream function, concentration, temperature profiles, axial velocity, and pressure gradient. Whereas, transverse velocity, pressure rise per wave length, and frictional force on the wall of the tubule are investigated with aid of numerical computations and their outcomes are demonstrated graphically. A comprehensive analysis for comparison of Perturb and numerical solution is done. This analysis validates the analytical solution.

4.
Entropy (Basel) ; 23(9)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34573749

RESUMEN

In this study, an application of deep learning-based neural computing is proposed for efficient real-time state estimation of the Markov chain underwater maneuvering object. The designed intelligent strategy is exploiting the strength of nonlinear autoregressive with an exogenous input (NARX) network model, which has the capability for estimating the dynamics of the systems that follow the discrete-time Markov chain. Nonlinear Bayesian filtering techniques are often applied for underwater maneuvering state estimation applications by following state-space methodology. The robustness and precision of NARX neural network are efficiently investigated for accurate state prediction of the passive Markov chain highly maneuvering underwater target. A continuous coordinated turning trajectory of an underwater maneuvering object is modeled for analyzing the performance of the neural computing paradigm. State estimation modeling is developed in the context of bearings only tracking technology in which the efficiency of the NARX neural network is investigated for ideal and complex ocean environments. Real-time position and velocity of maneuvering object are computed for five different cases by varying standard deviations of white Gaussian measured noise. Sufficient Monte Carlo simulation results validate the competence of NARX neural computing over conventional generalized pseudo-Bayesian filtering algorithms like an interacting multiple model extended Kalman filter and an interacting multiple model unscented Kalman filter.

5.
Micromachines (Basel) ; 12(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34442509

RESUMEN

This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow are studied. The problem is modeled using boundary layer theory, Maxwell's equations and Fourier's conduction law along with defined physical factors. Similarity transformations are utilized for model simplification which is analytically solved with the homotopy analysis method. The h-curves up to 20th order for solutions establishes the stability and convergence of the adopted computational method. Rheological impacts of involved parameters on flow variables and entropy generation number are demonstrated via graphs and tables. The study reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for ß while it enhances for Bi, R and λ. Moreover, heat transfer rate elevates for large Bi with convective conditions at surface.

6.
Entropy (Basel) ; 23(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947058

RESUMEN

In this study, an intelligent computing paradigm built on a nonlinear autoregressive exogenous (NARX) feedback neural network model with the strength of deep learning is presented for accurate state estimation of an underwater passive target. In underwater scenarios, real-time motion parameters of passive objects are usually extracted with nonlinear filtering techniques. In filtering algorithms, nonlinear passive measurements are associated with linear kinetics of the target, governing by state space methodology. To improve tracking accuracy, effective feature estimation and minimizing position error of dynamic passive objects, the strength of NARX based supervised learning is exploited. Dynamic artificial neural networks, which contain tapped delay lines, are suitable for predicting the future state of the underwater passive object. Neural networks-based intelligence computing is effectively applied for estimating the real-time actual state of a passive moving object, which follows a semi-curved path. Performance analysis of NARX based neural networks is evaluated for six different scenarios of standard deviation of white Gaussian measurement noise by following bearings only tracking phenomena. Root mean square error between estimated and real position of the passive target in rectangular coordinates is computed for evaluating the worth of the proposed NARX feedback neural network scheme. The Monte Carlo simulations are conducted and the results certify the capability of the intelligence computing over conventional nonlinear filtering algorithms such as spherical radial cubature Kalman filter and unscented Kalman filter for given state estimation model.

7.
PeerJ Comput Sci ; 7: e351, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33817001

RESUMEN

The cloud is a shared pool of systems that provides multiple resources through the Internet, users can access a lot of computing power using their computer. However, with the strong migration rate of multiple applications towards the cloud, more disks and servers are required to store huge data. Most of the cloud storage service providers are replicating full copies of data over multiple data centers to ensure data availability. Further, the replication is not only a costly process but also a wastage of energy resources. Furthermore, erasure codes reduce the storage cost by splitting data in n chunks and storing these chunks into n + k different data centers, to tolerate k failures. Moreover, it also needs extra computation cost to regenerate the data object. Cache-A Replica On Modification (CAROM) is a hybrid file system that gets combined benefits from both the replication and erasure codes to reduce access latency and bandwidth consumption. However, in the literature, no formal analysis of CAROM is available which can validate its performance. To address this issue, this research firstly presents a colored Petri net based formal model of CAROM. The research proceeds by presenting a formal analysis and simulation to validate the performance of the proposed system. This paper contributes towards the utilization of resources in clouds by presenting a comprehensive formal analysis of CAROM.

8.
Environ Pollut ; 279: 116899, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33743438

RESUMEN

Development of non-noble metal cluster catalysts, aiming at concurrently high activity and stability, for emission control systems has been challenging because of sintering and overcoating of clusters on the support. In this work, we reported the role of well-dispersed copper nanoclusters supported on TiO2 in CO oxidation under industrially relevant operating conditions. The catalyst containing 0.15 wt% Cu on TiO2 (0.15 CT) exhibited a high dispersion (59.1%), a large specific surface area (381 m2/gCu), a small particle size (1.77 nm), and abundant active sites (75.8% Cu2O). The CO oxidation activity measured by the turnover frequency (TOF) was found to be enhanced from 0.60 × 10-3 to 3.22 × 10-3 molCO·molCu-1·s-1 as the copper loading decreased from 5 to 0.15 wt%. A CO conversion of approximately 60% was still observed in the supported cluster catalyst with a Cu loading of 5 wt% at 240 °C. No deactivation was observed for catalysts with low copper loading (0.15 and 0.30 CT) after 8 h of time-on-stream, which compares favorably with less stable Au cluster-based catalysts reported in the literature. In contrast, catalysts with high copper loading (0.75 and 5 CT) showed deactivation over time, which was ascribed to the increase in copper particle size due to metal cluster agglomeration. This study elucidated the size-activity threshold of TiO2-supported Cu cluster catalysts. It also demonstrated the potential of the supported Cu cluster catalyst at a typical temperature range of diesel engines at light-load. The supported Cu cluster catalyst could be a promising alternative to noble metal cluster catalysts for emission control systems.


Asunto(s)
Cobre , Titanio , Catálisis , Oxidación-Reducción
9.
J Asian Nat Prod Res ; 23(11): 1077-1084, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33140651

RESUMEN

Many plants remain unexplored for their endophytic fungi that may possess potentially important phytochemicals. Consequently, we have focused to discover new natural products from endophytic fungus Diaporthe perseae sp. isolated from the stem of the Chinese mangrove Pongamia pinnata (L.) Pierre plant that led to the isolation of one new chlorinated isochromophilone G (1) along with six known azaphilones (2-7). The structures of the isolated compounds were elucidated by UV, NMR and Mass spectroscopic analysis. All the isolated compounds were screened for their antimicrobial and anti-oxidant activities.


Asunto(s)
Millettia , Antibacterianos/farmacología , Antioxidantes/farmacología , Ascomicetos , Benzopiranos , China , Estructura Molecular , Pigmentos Biológicos
11.
Small ; 16(25): e2001551, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32459055

RESUMEN

The luminous efficiency of inorganic white light-emitting diodes, to be used by the next generation as light initiators, is continuously progressing and is an emerging interest for researchers. However, low color-rendering index (Ra), high correlated color temperature (CCT), and poor stability limit its wider application. Herein, it is reported that Sm3+ - and Eu3+ -doped calcium scandate (CaSc2 O4 (CSO)) are an emerging deep-red-emitting material with promising light absorption, enhanced emission properties, and excellent thermal stability that make it a promising candidate with potential applications in emission display, solid-state white lighting, and the device performance of perovskite solar cells (PSCs). The average crystal structures of Sm3+ -doped CSO are studied by synchrotron X-ray data that correspond to an extremely rigid host structure. Samarium ion is incorporated as a sensitizer that enhances the emission intensity up to 30%, with a high color purity of 88.9% with a 6% increment. The impacts of hosting the sensitizer are studied by quantifying the lifetime curves. The CaSc2 O4 :0.15Eu3+ ,0.03Sm3+ phosphor offers significant resistance to thermal quenching. The incorporation of lanthanide ion-doped phosphors CSOE into PSCs is investigated along with their potential applications. The CSOE-coated PSCs devices exhibit a high current density and a high power conversion efficiency (15.96%) when compared to the uncoated control devices.

12.
Saudi J Biol Sci ; 26(7): 1602-1606, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31762633

RESUMEN

Experimental based evidence suggests that most of the medicinal plants possess wide-ranging pharmacological and biological activities that may possibly use in treatment of inflammation-related diseases. The current study was aimed to explore the acute toxicity, analgesic, sedative and antipyretic activities of Monotheca buxifolia and Bosea amherstiana in mices. In vivo experimental models were used in this study. Acute toxicity was evaluated for 24 h' interval at concentration of 500, 1000, 1500 and 2000 mg/kg. The analgesic activity was estimated by acetic acid induced writhing test. White wood apparatus enclosed in stainless steel was used for sedative experiment and antipyretic activity was evaluated in brewer's yeast induced hyperthermic at 50, 100 and 150 mg/kg i.p. Both plants were found safe at all tested doses. Monotheca buxifolia and Bosea amherstiana dose-dependently reduced abdominal constrictions in mice. Both plants exhibited significant (P < 0.0001) sedative effects in dose of 50, 150 and 150 mg/kg. Both plants markedly (P < 0.0001) reduced yeast induced hyperthermia. The inhibitions were dose-dependent and remained significant up to five hours of administration. These investigational results have linked a pharmacological indication for the traditional claim of the drugs to be used as an anti-inflammatory, analgesics and antipyretic agents.

14.
C R Biol ; 342(5-6): 124-135, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31402177

RESUMEN

Rhizoctonia solan Kühn (teleomorph: Thanatephorus cucumeris (Frank) Donk (R. solani) is a soil-borne phytopathogenic species complex as well as a necrotic fungus that causes significant crop yield losses worldwide. Agronomic practices (crop rotation), resistant cultivars, and chemical pesticides are widely used to control R. solani. However, these practices are insufficient to control the pest. Moreover, the application of chemical pesticides is harmful to both the environment and human health. Therefore, the use of biocontrol agents (BCAs) and that of plant-growth promoting bacteria (PGPB) are considered to be potentially sustainable, cost-effective, efficient, and eco-friendly ways to control R. solani. Several microorganisms have been used as biocontrol agents (BCAs) to manage R. solani. Among these, biocontrol agents (BCAs) Bacillus spp. are used to promote plant growth. Furthermore, due to its broad range of antibiotic-producing abilities, Bacillus spp. is widely used against R. solani. In this review, current and previous studies about the ability of Bacillus spp. to control diseases caused by R. solani are reported. It also focuses on the plant-growth promotion attributes of Bacillus spp. in response to the deleterious effects of R. solani.


Asunto(s)
Bacillus , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rhizoctonia , Desarrollo de la Planta
15.
J Colloid Interface Sci ; 554: 627-639, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31344529

RESUMEN

The intertwined exploring of solar water driven into chemical energy configurated by a constituted semiconductor photocatalyst under sunlight approach toward a remediation eager method that solve the environmental issues. Currently we optimized polymeric carbon nitride PCN by a sophisticated molecular co-polymerization process which diffused with a mirror organic conjugated heterocyclic monomer to maximize its photocatalytic activity. Herein, for the 1st time we report an organic π-electron stacking conjugated thiazolothiazole (TT) as a small molecule within the framework of PCN to enhance the conductive optical and photocatalytic properties of PCN under solar energy irradiation. The fusion of this bicyclic thiazolothiazole (TT) co-monomer within PCN remarkably enhanced the charge carrier motilities and giving a rigid packing due to sulfur contents. Excitingly the as-synthesized samples were processed under different liberated characterization such as XRD, FTIR, BET, SEM, TEM, XPS, PL, DRS and EPR under both regions respectively. Results reflect that the integration of thiazolothiazole (TT) in the heptazine structure of PCN alter a prodigious delocalization in its π-conjugated system and similarly demonstrating an apparent fluctuation in its surface area, electronic structure, its calculated band gap, chemical composition analysis and maximize the process of generation of electrons under solar light from ground state (HOMO) to the excited state (LUMO) of polymeric carbon nitride (PCN). Beside, this unique integrity of TT co-monomer with in PCN matrix remarkably improve the photocatalytic activity toward prosperity and the amount optimized CNU-TT12.0 demonstrated an outstanding photocatalytic activity of water reduction for H2 evolution and as well of RhB pollutant photodegradation. The sample optimized display 10.6 enhancement comparatively pure pristine sample.

16.
J Colloid Interface Sci ; 548: 197-205, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31003166

RESUMEN

The conjugated co-monomer, trimesic acid (TMA) was integrated into the triazine framework of polymeric carbon nitride (PCN), synthesized through chemical condensation of urea. The TMA-modified carbon nitride samples obtained were named as CNU-TMA and it was utilized for the photocatalytic reduction of carbon dioxide (CO2) under visible light illumination. The induction of such electron donor-acceptor co-monomer (TMA) dominates the intramolecular structure of PCN by acting as a nucleophilic substitution substrate to facilitate the electron density in the π-electron conjugated system of PCN and thus elevate its photocatalytic activity. Also, this process of copolymerization with TMA, not only cause a significant diversion in the specific area, band gap, chemical composition, and structure of PCN but also promote efficient charge transport from ground state (HOMO) to the excited state (LUMO) of the PCN. For comparison, CNU samples modified with other co-monomers were prepared by the same method and were named as CNU-FDA (2,5-Furandicarboxylic acid), CNU-PDA (2,6-pyridinedicarboxylic acid), CNU-PTA (Phthalic acid). Similarly, co-monomer TMA was incorporated in other PCN precursors such as dyandicyanamide (DCDA), thiourea (SCN) and ammonium thiocyanate (NH2SCN) and was named as CND-TMA13.0, CNT-TMA13.0, and CNA-TMA13.0, respectively. Besides, the average weight ratio between urea and TMA was well tuned and also CNU-TMA13.0 gain a fabulous 16 fold-enhanced photocatalytic performance than blank CNU.

17.
Int J Nanomedicine ; 14: 1401-1410, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30863068

RESUMEN

Malaria, the exterminator of ~1.5 to 2.7 million human lives yearly, is a notorious disease known throughout the world. The eradication of this disease is difficult and a challenge to scientists. Vector elimination and effective chemotherapy for the patients are key tactics to be used in the fight against malaria. However, drug resistance and environmental and social concerns are the main hurdles in this fight against malaria. Overcoming these limitations is the major challenge for the 21st-century malarial researchers. Adapting the principles of nano-biotechnology to both vector control and patient therapy is the only solution to the problem. Several compounds such as lipids, proteins, nucleic acid and metallic nanoparticles (NPs) have been successfully used for the control of this lethal malaria disease. Other useful natural reagents such as microbes and their products, carbohydrates, vitamins, plant extracts and biodegradable polymers, are also used to control this disease. Among these particles, the plant-based particles such as leaf, root, stem, latex, and seed give the best antagonistic response against malaria. In the present review, we describe certain efforts related to the control, prevention and treatment of malaria. We hope that this review will open new doors for malarial research.


Asunto(s)
Biotecnología/métodos , Malaria/prevención & control , Malaria/terapia , Nanotecnología/métodos , Animales , Tecnología Química Verde , Humanos , Insectos Vectores , Malaria/parasitología
18.
Sci Rep ; 8(1): 11028, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038240

RESUMEN

Atropa acuminata Royle Ex Lindl (Atropa acuminata) under tremendous threat of extinction in its natural habitat. However, the antimicrobial, antileishmanial and anticancer effects of the plant's extracts have not been reported yet. In the current study, an attempt has been made to evaluate the pharmacological potential of this plant's extracts against microbes, Leishmania and cancer. The roots, stems and leaves of Atropa acuminata were ground; then, seven different solvents were used alone and in different ratios to prepare crude extracts, which were screened for pharmacological effects. The aqueous, methanolic and ethanolic extracts of all parts carried a broad spectrum of anti-bacterial activities, while no significant activity was observed with combined solvents. Three types of cytotoxicity assays were performed, i.e., haemolytic, brine shrimp and protein kinase assays. The aqueous extract of all the parts showed significant haemolytic activity while n-hexane extracts of roots showed significant activity against brine shrimp. The acetone extracts strongly inhibited protein kinase while the methanolic extracts exhibited significant cytotoxic activity of roots and stem. The anti-leishmanial assays revealed that the methanolic extract of leaves and roots showed significant activity. These findings suggest that this plant could be a potential source of natural product based drugs.


Asunto(s)
Antibacterianos/química , Atropa/química , Plantas Medicinales/química , Animales , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Artemia/efectos de los fármacos , Especies en Peligro de Extinción , Etanol/química , Leishmania/efectos de los fármacos , Metanol/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Solventes/química
19.
Saudi J Biol Sci ; 25(2): 320-325, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29472785

RESUMEN

Honey is a natural food item produced by honey bees. Ancient civilizations considered honey as a God gifted prestigious product. Therefore, a huge literature is available regarding honey importance in almost all religions. Physically, honey is a viscous and jelly material having no specific color. Chemically, honey is a complex blend of many organic and inorganic compounds such as sugars, proteins, organic acids, pigments, minerals, and many other elements. Honey use as a therapeutic agent is as old as human civilization itself. Prior to the appearance of present day drugs, honey was conventionally used for treating many diseases. At this instant, the modern research has proven the medicinal importance of honey. It has broad spectrum anti-biotic, anti-viral and anti-fungal activities. Honey prevents and kills microbes through different mechanism such as elevated pH and enzyme activities. Till now, no synthetic compound that works as anti-bacterial, anti-viral and anti-fungal drugs has been reported in honey yet it works against bacteria, viruses and fungi while no anti-protozoal activity has been reported. Potent anti-oxidant, anti-inflammatory and anti-cancerous activities of honey have been reported. Honey is not only significant as anti-inflammatory drug that relieve inflammation but also protect liver by degenerative effects of synthetic anti-inflammatory drugs. This article reviews physico-chemical properties, traditional use of honey as medicine and mechanism of action of honey in the light of modern scientific medicinal knowledge.

20.
RSC Adv ; 8(71): 40693-40700, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-35557898

RESUMEN

In the present work, we described the synthesis of a novel phosphor Ca3Lu(AlO)3(BO3)4 (CLAB) activated with Sm3+ via high temperature solid-state reaction. X-ray diffraction (XRD), FTIR spectra, diffuse reflection spectra, photoluminescence (PL) spectra and fluorescence decay curves were used to characterize the as-synthesized samples. The morphology and chemical composition were measured by field emission scanning electron microscope (FE-SEM) and X-ray energy diffraction spectroscopy (EDAX). The structure refinements from XRD data revealed the isostructural arrangement of CLAB : Sm3+ to gaudefroyite with a hexagonal P63/m space group in which the AlO6 octahedral chains are interconnected by BO3 triangles in the ab plane to form a Kagome-type lattice (star-shaped), leaving trigonal and apatite-like-tunnels. Under 404 nm excitation, the as-synthesized phosphor shows an intensely red emission peaked at 614 nm with CIE coordinates of (0.615, 0.380) and high colour purity up to 98.53%. The quantum yield of the phosphor was found to be 15.5% with a desired doping concentration of 5 mol% Sm3+ ions. The red emission intensity of CLAB : 0.05Sm3+ at 425 K is 86.6% of that at 300 K. All these good properties make the phosphor of CLAB : Sm3+ exhibit a great potential for application in UV-based warm white LEDs used in displays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA