Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Biol ; 100(4): 650-662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285971

RESUMEN

PURPOSE: The 'Improved White Ponni' (IWP) rice variety, which is susceptible to lodging, leading to yield losses. Our primary goal is to develop new rice lines with non-lodging traits, enhancing stem strength and resistance to adverse conditions. Additionally, we aim to improve yield-contributing agronomic traits, benefiting farmers, food security, and the environment. Our work contributes to scientific knowledge and addresses a significant issue in Southern Indian rice cultivation. MATERIALS AND METHODS: In the present study, early and semi-dwarf early mutants of IWP were developed without altering the native grain quality traits using gamma ray-mediated mutagenesis. The seeds (500) were irradiated with γ-rays after fixing the Lethal Dose 50 (LD50), and selection for semi-dwarfism and earliness was imposed on a large M2 population. The selected traits were confirmed by evaluating the M3 lines at morpho-physiological, biochemical, and molecular levels. RESULTS: The response of mutants to gibberellic acid has been studied, which identified responsive mutants as well as slow-responding mutant lines including IWP-11-2, IWP-48-2, IWP-50-11, and IWP-33-2. Agar plate assay indicated low α- amylase content in IWP-50-11, IWP-33-2, IWP-43-1, IWP-47-2, and IWP-18-1. The scanning electron microscopy demonstrated that the mutants displayed an increased cellular dimension in comparison to the wild type. In dwarf mutants, null alleles were observed for the SD1 gene-specific primers which depicts gene undergone mutation. Further sequencing revealed the presence of single nucleotide polymorphisms in the SD1 gene resulting in semi-dwarfism in the mutant IWP-D-1. CONCLUSIONS: The impact of a defective gibberellic acid-mediated signaling pathway in mutants to produce a novel high-yielding and early maturing semi-dwarf rice variety.


Asunto(s)
Enanismo , Giberelinas , Oryza , Sindactilia , Oryza/genética , Rayos gamma , Polimorfismo de Nucleótido Simple , Fenotipo
2.
Hereditas ; 155: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28729817

RESUMEN

BACKGROUND: Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. RESULTS: Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa, while lowest cross-transferability (91.93%) was obtained for Eruca sativa. The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea/B. nigra/B. rapa and B. carinata/B. napus/B. oleracea. C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. CONCLUSION: The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.


Asunto(s)
Evolución Biológica , Brassica/genética , Repeticiones de Microsatélite , Filogenia , Alelos , Brassica/clasificación , Mapeo Cromosómico , Marcadores Genéticos , Variación Genética
3.
3 Biotech ; 7(4): 239, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28702937

RESUMEN

Genetic engineering technique offers myriads of applications in improvement of horticultural crops for biotic and abiotic stress tolerance, and produce quality enhancement. During last two decades, a large number of transgenic horticultural crops has been developed and more are underway. A number of genes including natural and synthetic Cry genes, protease inhibitors, trypsin inhibitors and cystatin genes have been used to incorporate insect and nematode resistance. For providing protection against fungal and bacterial diseases, various genes like chitinase, glucanase, osmotin, defensin and pathogenesis-related genes are being transferred to many horticultural crops world over. RNAi technique has been found quite successful in inducing virus resistance in horticultural crops in addition to coat protein genes. Abiotic stresses such as drought, heat and salinity adversely affect production and productivity of horticultural crops and a number of genes encoding for biosynthesis of stress protecting compounds including mannitol, glycine betaine and heat shock proteins have been employed for abiotic stress tolerance besides various transcription factors like DREB1, MAPK, WRKY, etc. Antisense gene and RNAi technologies have revolutionized the pace of improvement of horticultural crops, particularly ornamentals for color modification, increasing shelf-life and reducing post-harvest losses. Precise genome editing tools, particularly CRISPR/Cas9, have been efficiently applied in tomato, petunia, citrus, grape, potato and apple for gene mutation, repression, activation and epigenome editing. This review provides comprehensive overview to draw the attention of researchers for better understanding of genetic engineering advancements in imparting biotic and abiotic stress tolerance as well as on improving various traits related to quality, texture, plant architecture modification, increasing shelf-life, etc. in different horticultural crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...