Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 10(1): 54-64, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292616

RESUMEN

Elastomers are widely used in textiles, foam, and rubber, yet they are rarely recycled due to the difficulty in deconstructing polymer chains to reusable monomers. Introducing reversible bonds in these materials offers prospects for improving their circularity; however, concomitant bond exchange permits creep, which is undesirable. Here, we show how to architect dynamic covalent polydiketoenamine (PDK) elastomers prepared from polyetheramine and triketone monomers, not only for energy-efficient circularity, but also for outstanding creep resistance at high temperature. By appending polytopic cross-linking functionality at the chain ends of flexible polyetheramines, we reduced creep from >200% to less than 1%, relative to monotopic controls, producing mechanically robust and stable elastomers and carbon-reinforced rubbers that are readily depolymerized to pure monomer in high yield. We also found that the multivalent chain end was essential for ensuring complete PDK deconstruction. Mapping reaction coordinates in energy and space across a range of potential conformations reveals the underpinnings of this behavior, which involves preorganization of the transition state for diketoenamine bond acidolysis when a tertiary amine is also nearby.

2.
ACS Macro Lett ; 10(12): 1540-1548, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35549144

RESUMEN

Polymer topology has been shown to play a key role in tuning the dynamics of complex fluids and gels. At the same time, polymer composites, ubiquitous in everyday life, have been shown to exhibit emergent desirable mechanical properties not attainable in single-species systems. Yet, how topology impacts the dynamics and structure of polymer composites remains poorly understood. Here, we create composites of rigid rods (microtubules) polymerized within entangled solutions of flexible linear and ring polymers (DNA) of equal length. We couple optical tweezers microrheology with confocal microscopy and scaled particle theory to show that composites with linear DNA exhibit a strongly nonmonotonic dependence of elasticity and stiffness on microtubule concentration due to depletion-driven polymerization and flocculation of microtubules. In contrast, composites containing ring DNA show a much more modest monotonic increase in elastic strength with microtubule concentration, which we demonstrate arises from the decreased conformational size and increased miscibility of rings.


Asunto(s)
ADN , Microtúbulos , ADN/análisis , Floculación , Microtúbulos/química , Conformación de Ácido Nucleico , Polímeros/análisis
3.
Front Phys ; 82020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34368112

RESUMEN

The dynamic morphology and mechanics of the cytoskeleton is determined by interacting networks of semiflexible actin filaments and rigid microtubules. Active rearrangement of networks of actin and microtubules can not only be driven by motor proteins but by changes to ionic conditions. For example, high concentrations of multivalent ions can induce bundling and crosslinking of both filaments. Yet, how cytoskeleton networks respond in real-time to changing ion concentrations, and how actin-microtubule interactions impact network response to these changing conditions remains unknown. Here, we use microfluidic perfusion chambers and two-color confocal fluorescence microscopy to show that increasing magnesium ions trigger contraction of both actin and actin-microtubule networks. Specifically, we use microfluidics to vary the Mg2+ concentration between 2 and 20 mM while simultaneously visualizing the triggered changes to the overall network size. We find that as Mg2+ concentration increases both actin and actin-microtubule networks undergo bulk contraction, which we measure as the shrinking width of each network. However, surprisingly, lowering the Mg2+concentration back to 2 mM does not stop or reverse the contraction but rather causes both networks to contract further. Further, actin networks begin to contract at lower Mg2+ concentrations and shorter times than actin-microtubule networks. In fact, actin-microtubule networks only undergo substantial contraction once the Mg2+ concentration begins to lower from 20 mM back to 2 mM. Our intriguing findings shed new light on how varying environmental conditions can dynamically tune the morphology of cytoskeleton networks and trigger active contraction without the use of motor proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA