Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biotechnol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886309

RESUMEN

As global agricultural challenges intensify, particularly drought stress, the exploration of innovative strategies for crop resilience has become crucial. This study focuses on the role of the microbial endophyte metabolite Albaflavenone in enhancing drought resistance in tomato (Solanum lycopersicum L.) through the activation of the SlMAPK1 protein in the MAPK pathway. To computationally analyze the interaction between Albaflavenone and SlMAPK1 and to elucidate the potential enhancement of drought tolerance in tomato plants through this interaction. We utilized molecular docking, homology modeling, and molecular dynamics simulations to investigate the binding affinities and interaction dynamics between SlMAPK1 and Albaflavenone. Functional network analysis was employed to examine protein-protein interactions within the MAPK pathway, while the MM-GBSA method was used to calculate binding free energies. Our computational analyses revealed that Albaflavenone exhibited a high binding affinity to SlMAPK1 with a binding energy of - 8.9 kcal/mol. Molecular dynamics simulations showed this interaction significantly stabilized SlMAPK1, suggesting enhanced activity. Specifically, the root mean square deviation (RMSD) of the Albaflavenone-SlMAPK1 complex stabilized at around 3.1 Å, while the root mean square fluctuations (RMSF) indicated consistent amino acid conformations. Additionally, the radius of gyration (Rg) analysis demonstrated minimal variance, suggesting a compact and stable protein-ligand complex. The significant binding affinity between Albaflavenone and SlMAPK1 highlights the potential of leveraging plant-microbe interactions in developing sustainable agricultural practices. These findings also demonstrate the effectiveness of computational methods in dissecting complex biological interactions, contributing to a deeper understanding of plant resilience strategies against environmental stresses.

2.
Front Microbiol ; 14: 1259103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869675

RESUMEN

The escalation of harmful pollutants, including heavy metals, due to industrialization and urbanization has become a global concern. To mitigate the negative impacts of heavy metal stress on germination and early plant development, growth regulators have been employed. This study aimed to evaluate the response of mung bean (Vigna radiata L.) to zinc stress in the presence of brassinosteroids, focusing on seedling growth and antioxidant potential. Mung bean seedlings were treated with three concentrations of 24-epibrassinolide (EBL) (0.1, 0.2, and 0.4 PPM) with or without zinc. Results demonstrated that the application of brassinosteroids, combined with zinc stress, significantly enhanced germination percentage (about 47.06, 63.64, and 120%), speed of germination (about 39.13, 50, and 100%), seedling growth (about 38% in case of treatment combined 0.4 PPM 24-EBL and 1.5 mM ZnSO4) and seedling vigor index (204% in case of treatment combined 0.4 PPM 24-EBL and 1.5 mM ZnSO4) compared to zinc-treated seedlings alone after 24 h. The activities of antioxidative enzymes (catalase, ascorbate peroxidase, polyphenol oxidase, and peroxidase) and total soluble protein content decreased, while lipid peroxidation and proline content exhibited a significant increase (p ≤ 0.05) when compared to the control. However, the negative effects induced by heavy metal stress on these parameters were significantly mitigated by EBL application. Notably, the most effective concentration of EBL in overcoming zinc stress was found to be 0.4 PPM. These findings underscore the potential of exogenously applied brassinosteroids as a valuable tool in phytoremediation projects by ameliorating heavy metal stress.

3.
Front Plant Sci ; 14: 1238870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719210

RESUMEN

Introduction: This study explored the molecular characterization of 14 eggplant (brinjal) genotypes to evaluate their genetic diversity and the impact of heterosis. As eggplant is a vital horticultural crop with substantial economic and nutritional value, a comprehensive understanding of its genetic makeup and heterosis effects is essential for effective breeding strategies. Our aim was not only to dissect the genetic diversity among these genotypes but also to determine how genetic distance impacts heterotic patterns, which could ultimately help improve hybrid breeding programs. Methods: Genetic diversity was assessed using 20 SSR markers, and the parental lines were grouped into five clusters based on the Unweighted Pair Group Method of Arithmetic Means (UPGMA). Heterosis was examined through yield and yield-related traits among parents and hybrids. Results: Polymorphisms were detected in eight out of the twenty SSR markers across the parental lines. Notably, a high genetic distance was observed between some parents. The analysis of yield and yield-related traits demonstrated significant heterosis over mid, superior, and standard parents, particularly in fruit yield per plant. Two crosses (RKML-26 X PPC and RKML1 X PPC) displayed substantial heterosis over mid and better parents, respectively. However, the positive correlation between genetic distance and heterosis was only up to a certain threshold; moderate genetic distance often resulted in higher heterosis compared to very high genetic distance. Discussion: These findings emphasize the critical role of parental selection in hybrid breeding programs. The results contribute to the understanding of the relationship between genetic distance and heterosis, and it is suggested that future research should delve into the genetic mechanisms that drive heterosis and the effect of genetic distance variance on heterosis. The insights drawn from this study can be harnessed to enhance crop yield and economic value in breeding programs.

4.
Front Plant Sci ; 14: 1215592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719223

RESUMEN

Introduction: Humanity is suffering from huge and severe difficulties, including changes in climate, soil degradation, scarcity of water and the security of food and medicines, among others. The aquaponics system acts as a closed loop consisting of aquaculture elements and hydroponics, which may contribute to addressing these problems. The aquaponics method is quickly expanding as the requirement to increase the production of sustainable herbal products, including medicinal compounds and foods, in freshwater systems and replenish phosphorous reserves shrinks. Methods: The current work is designed to increase the production of the antioxidants withaferin A and withanolide A in two varieties (Jawahar-20 and Poshita) of W. somnifera using the aquaponics technique. Total 100 seedlings (one month old) grown in soil initially were taken to be grown in aquaponics for a time period of 6 months.And 100 seedlings were placed in pots containing soil as control for study after six months. Results: It was observed that the higher content of withaferin A was analyzed in the root and stem samples of Jawahar-20 and Poshita from the six-month-old plant of W. somnifera. The maximum content of withanolide A was examined in the root samples of the six month-old plants of Poshita (1.879 mg/g) and Jawahar-20 (1.221 mg/g). While the 6 month old Poshita seedling grown in soil recorded less withaferin A (0.115 ± 0.009b) and withanolide A (0.138 ± 0.008d). Discussion: It is concluded that Poshita was found to be more promising for the enhanced production of withaferin A and withanolide A in the aquaponics system. Moreover, the root was observed as the best source for the production of withaferin A and withanolide A and the best age of the plant is 2 years for the production compounds in medicinal plants with futuristic perspective to hill agriculture integrated farming. compounds. Thus aquaponics can be an effective approach with enhanced yield of bioactive compounds in medicinal plants with futuristic perspective to hill agriculture and integrated farming.

5.
Front Microbiol ; 14: 1111135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876100

RESUMEN

The current study evaluated Parapedobacter indicus MCC 2546 for its potential to produce a bioemulsifier (BE). Screening methods performed for BE production by P. indicus MCC 2546 showed good lipase activity, positive drop collapse test, and oil-spreading activity. Furthermore, it showed maximum emulsification activity (225 EU/ml) and emulsification index (E24 50%) at 37°C in Luria Bertani broth at 72 h with olive oil as a substrate. The optimal pH and NaCl concentration for maximum emulsification activity were 7 and 1%, respectively. P. indicus MCC 2546 lowered the surface tension of the culture medium from 59.65 to 50.42 ± 0.78 mN/m. BE produced was composed of 70% protein and 30% carbohydrate, which showed the protein-polysaccharide nature of the BE. Furthermore, Fourier transform infrared spectroscopy analysis confirmed the same. P. indicus MCC 2546 showed a catecholate type of siderophore production. This is the first report on BE and siderophore production by the genus Parapedobacter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA