Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicology ; 31(7): 1158-1168, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36006497

RESUMEN

This study investigated the changes in the sinking rates and physiochemical characteristics of the planktonic marine diatom, Thalassiosira pseudonana, caused by 72 h exposure to antifouling agent tributyltin (TBT) at 1.0 µg L-1 (72-h 10% effective concentration for growth rate, EC10), and 1.7 µg L-1 (EC50). After 72 h of exposure, the sinking rates of T. pseudonana cells were changed from 0.13-0.08 m day-1 in the control, 0.08-0.05 m day-1 in the EC10 treatment, and 0.04-0.006 m day-1 in the EC50 treatment. The results revealed that the sinking rate of T. pseudonana decreased significantly compared with the control at 48 h in the EC10 treatment group and at 24, 48, and 72 h in the EC50 treatment group. The photosynthetic performance index on an absorption basis and the maximum quantum yields of photosystem II also decreased significantly (P < 0.05) in the TBT treatments compared with the control. There was a significant (P < 0.05) positive correlation between sinking rates and cellular protein contents (ng cell-1). Changes in the biochemical and physiochemical composition of the cells suggest that interference with photosynthetic processes by TBT may have reduced their specific gravity and thereby caused a decrease in the sinking rates of T. pseudonana. The results of this investigation suggest the importance of considering the effects of pollutants on the sinking behaviors of diatoms when evaluating the adverse effects of pollutants on marine primary production.


Asunto(s)
Incrustaciones Biológicas , Diatomeas , Contaminantes Ambientales , Incrustaciones Biológicas/prevención & control , Contaminantes Ambientales/metabolismo , Fotosíntesis , Plancton , Compuestos de Trialquiltina
2.
Environ Sci Pollut Res Int ; 25(25): 25363-25370, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29946846

RESUMEN

The present study investigated how principal environmental factors such as temperature and light intensity change the toxicological properties of thiobencarb (TB) herbicide to the green alga, Raphidocelis subcapitata. At first, we investigated the inhibitory effect of TB (0, 15.6, 31.2, 62.4, and 125 µg L-1) on growth of R. subcapitata at five temperatures (10, 15, 20, 25, or 30 °C) for 144 h exposure and calculated 72- and 144-h effective concentration values (EC10, 20, and EC50) for growth rate. All EC values significantly decreased with an increasing temperature. The maximum quantum yield of photosystem II in R. subcapitata exposed to 125 µg L-1 of TB was also significantly inhibited with increased temperature. These physiological effects could explain the lower EC values at high temperatures. Then, single and interactive effects of TB, temperature, and light intensity on growth rate were investigated by three-way of analysis of variance. As a result, single and interactive effects were detected in all explanatory variables. These results suggest that temperature and light intensity change the acute toxicity parameter in R. subcapitata exposed to TB and must be considered in evaluating the risk of TB.


Asunto(s)
Chlorophyceae/efectos de los fármacos , Herbicidas/toxicidad , Luz , Temperatura , Tiocarbamatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Agua , Complejo de Proteína del Fotosistema II
3.
Chemosphere ; 175: 200-209, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28222374

RESUMEN

The present research investigated the effect of diuron on sinking rate and the physiochemical changes in two marine diatoms, Thalassiosira pseudonana (single-celled species) and Skeletonema marinoi-dohrnii complex (chain-forming species). The results revealed that the sinking rate of both diatoms exposed to diuron at a level of 50% effective concentration for growth (EC50) decreased significantly compared with the control. Photosynthetic performance (Fv/Fm and PIABS) of both diatoms also decreased significantly with diuron exposure. The number of cells per chain in S. marinoi-dohrnii decreased significantly with diuron treatment, but T. pseudonana cell diameter remained stable. Neutral lipid concentration per cell was significantly higher compared with control at 72 h in both diatom species exposed to EC50 level diuron. And water-soluble protein concentration per cell at 72 h was lower than control in the T. pseudonana EC50 group only. These biochemical changes may decrease specific gravity of cells and seems to cause a decreased sinking rate in diatoms. The positive significant correlation between the numbers of cells per chain and sinking rate in S. marinoi-dohrnii indicated that chain length is also an important factor in sinking rate regulation for chain-forming diatoms. Thus, our present study suggested that suppression of photosynthetic performance and the resultant physiochemical changes induced the decreased sinking rate that may inhibit the normal survival strategy (avoidance from the surface layer where strong light either causes photo-inhibition or interrupts resting cell formation). Therefore, the use of antifouling agents should be considered for the sustainable marine environment.


Asunto(s)
Diatomeas/efectos de los fármacos , Diurona/toxicidad , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Diatomeas/fisiología , Fotosíntesis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA