Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 238(2): 673-687, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36707918

RESUMEN

Plant embryogenesis results from the fusion of male and female gametes but can also be induced in somatic cells. The molecular pathways for embryo initiation are poorly understood, especially in monocots. In rice, the male gamete expressed BABY BOOM1 (OsBBM1) transcription factor functions as an embryogenic trigger in the zygote and can also promote somatic embryogenesis when ectopically expressed in somatic tissues. We used gene editing, transcriptome profiling, and chromatin immunoprecipitation to determine the molecular players involved in embryo initiation downstream of OsBBM1. We identify OsYUCCA (OsYUC) auxin biosynthesis genes as direct targets of OsBBM1. Unexpectedly, these OsYUC targets in zygotes are expressed only from the maternal genome, whereas the paternal genome exclusively provides functional OsBBM1 to initiate embryogenesis. Induction of somatic embryogenesis by exogenous auxin requires OsBBM genes and downstream OsYUC targets. Ectopic OsBBM1 initiates somatic embryogenesis without exogenous auxins but requires functional OsYUC genes. Thus, an OsBBM-OsYUC module is a key player for both somatic and zygotic embryogenesis in rice. Zygotic embryo initiation involves a partnership of male and female genomes, through which paternal OsBBM1 activates maternal OsYUC genes. In somatic embryogenesis, exogenous auxin triggers OsBBM1 expression, which then activates endogenous auxin biosynthesis OsYUC genes.


Asunto(s)
Ácidos Indolacéticos , Oryza , Ácidos Indolacéticos/metabolismo , Cigoto/metabolismo , Oryza/genética , Oryza/metabolismo , Desarrollo Embrionario , Perfilación de la Expresión Génica , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Nat Commun ; 13(1): 7963, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575169

RESUMEN

Introducing asexual reproduction through seeds - apomixis - into crop species could revolutionize agriculture by allowing F1 hybrids with enhanced yield and stability to be clonally propagated. Engineering synthetic apomixis has proven feasible in inbred rice through the inactivation of three genes (MiMe), which results in the conversion of meiosis into mitosis in a line ectopically expressing the BABYBOOM1 (BBM1) parthenogenetic trigger in egg cells. However, only 10-30% of the seeds are clonal. Here, we show that synthetic apomixis can be achieved in an F1 hybrid of rice by inducing MiMe mutations and egg cell expression of BBM1 in a single step. We generate hybrid plants that produce more than 95% of clonal seeds across multiple generations. Clonal apomictic plants maintain the phenotype of the F1 hybrid along successive generations. Our results demonstrate that there is no barrier to almost fully penetrant synthetic apomixis in an important crop species, rendering it compatible with use in agriculture.


Asunto(s)
Apomixis , Oryza , Oryza/genética , Apomixis/genética , Plantas/genética , Semillas/genética , Mutación
3.
Heredity (Edinb) ; 128(6): 450-459, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35013549

RESUMEN

In the coming decades, maintaining a steady food supply for the increasing world population will require high-yielding crop plants which can be productive under increasingly variable conditions. Maintaining high yields will require the successful and uniform establishment of plants in the field under altered environmental conditions. Seed vigor, a complex agronomic trait that includes seed longevity, germination speed, seedling growth, and early stress tolerance, determines the duration and success of this establishment period. Elevated temperature during early seed development can decrease seed size, number, and fertility, delay germination and reduce seed vigor in crops such as cereals, legumes, and vegetable crops. Heat stress in mature seeds can reduce seed vigor in crops such as lettuce, oat, and chickpea. Warming trends and increasing temperature variability can increase seed dormancy and reduce germination rates, especially in crops that require lower temperatures for germination and seedling establishment. To improve seed germination speed and success, much research has focused on selecting quality seeds for replanting, priming seeds before sowing, and breeding varieties with improved seed performance. Recent strides in understanding the genetic basis of variation in seed vigor have used genomics and transcriptomics to identify candidate genes for improving germination, and several studies have explored the potential impact of climate change on the percentage and timing of germination. In this review, we discuss these recent advances in the genetic underpinnings of seed performance as well as how climate change is expected to affect vigor in current varieties of staple, vegetable, and other crops.


Asunto(s)
Germinación , Semillas , Cambio Climático , Productos Agrícolas/genética , Germinación/genética , Fitomejoramiento , Plantones , Semillas/genética
4.
Curr Opin Plant Biol ; 59: 101993, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33422964

RESUMEN

In flowering plants, haploid gametes - an egg cell and a sperm cell fuse to form the first diploid cell - the zygote. The zygote is the progenitor stem cell that gives rise to all the embryonic and post embryonic tissues and organs. Unlike animals, both maternal and paternal gene products participate in the initial development of zygotes in plants. Here, we discuss recent advances in understanding of the zygotic transition and embryo initiation in angiosperms, including the role of parental contributions to gene expression in the zygote. We further discuss utilization of this knowledge in agricultural biotechnology through synthetic apomixis. Parthenogenesis obtained by manipulation of embryogenic factors, combined with mutations that bypass meiosis, enables clonal propagation of hybrid crops through seeds.


Asunto(s)
Semillas , Cigoto , Animales , Productos Agrícolas , Diploidia , Regulación de la Expresión Génica de las Plantas , Haploidia , Semillas/genética
5.
Nature ; 565(7737): 91-95, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30542157

RESUMEN

The molecular pathways that trigger the initiation of embryogenesis after fertilization in flowering plants, and prevent its occurrence without fertilization, are not well understood1. Here we show in rice (Oryza sativa) that BABY BOOM1 (BBM1), a member of the AP2 family2 of transcription factors that is expressed in sperm cells, has a key role in this process. Ectopic expression of BBM1 in the egg cell is sufficient for parthenogenesis, which indicates that a single wild-type gene can bypass the fertilization checkpoint in the female gamete. Zygotic expression of BBM1 is initially specific to the male allele but is subsequently biparental, and this is consistent with its observed auto-activation. Triple knockout of the genes BBM1, BBM2 and BBM3 causes embryo arrest and abortion, which are fully rescued by male-transmitted BBM1. These findings suggest that the requirement for fertilization in embryogenesis is mediated by male-genome transmission of pluripotency factors. When genome editing to substitute mitosis for meiosis (MiMe)3,4 is combined with the expression of BBM1 in the egg cell, clonal progeny can be obtained that retain genome-wide parental heterozygosity. The synthetic asexual-propagation trait is heritable through multiple generations of clones. Hybrid crops provide increased yields that cannot be maintained by their progeny owing to genetic segregation. This work establishes the feasibility of asexual reproduction in crops, and could enable the maintenance of hybrids clonally through seed propagation5,6.


Asunto(s)
Oryza/embriología , Reproducción Asexuada , Semillas/embriología , Diploidia , Fertilización , Edición Génica , Genes de Plantas/genética , Genoma de Planta/genética , Haploidia , Meiosis/genética , Mutación , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción Asexuada/genética , Semillas/genética , Cigoto/metabolismo
6.
Dev Cell ; 43(3): 349-358.e4, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29112853

RESUMEN

The zygotic transition, from a fertilized egg to an embryo, is central to animal and plant reproduction. Animal embryos depend upon maternally provided factors until zygotic genome activation (ZGA). In plants, the timing and parental genome contributions to ZGA are unresolved. Here, we use the flowering plant Oryza sativa (rice) to characterize transcriptomes of time-staged isogenic and hybrid zygotes following fertilization. Large-scale transcriptomic changes were observed in unicellular zygotes, including upregulation of S-phase genes, a characteristic of ZGA. The parental contributions to ZGA were highly asymmetric. Zygotic transcription was primarily from the maternal genome and included genes for basic cellular processes. Transcription of the paternal genome was highly restricted but unexpectedly included genes encoding putative pluripotency factors expressed at the onset of ZGA. Thus, distinct transcriptional activities are exhibited by the parental genomes during the initiation of embryogenesis, which presumptively derive from divergent pre-zygotic transcriptional states established in the gametes.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Genoma de Planta/genética , Genes de Plantas/genética , Semillas , Activación Transcripcional/genética , Transcriptoma/genética
7.
Plant Physiol ; 172(1): 372-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457124

RESUMEN

OsMADS1 controls rice (Oryza sativa) floral fate and organ development. Yet, its genome-wide targets and the mechanisms underlying its role as a transcription regulator controlling developmental gene expression are unknown. We identify 3112 gene-associated OsMADS1-bound sites in the floret genome. These occur in the vicinity of transcription start sites, within gene bodies, and in intergenic regions. Majority of the bound DNA contained CArG motif variants or, in several cases, only A-tracts. Sequences flanking the binding peak had a higher AT nucleotide content, implying that broader DNA structural features may define in planta binding. Sequences for binding by other transcription factor families like MYC, AP2/ERF, bZIP, etc. are enriched in OsMADS1-bound DNAs. Target genes implicated in transcription, chromatin remodeling, cellular processes, and hormone metabolism were enriched. Combining expression data from OsMADS1 knockdown florets with these DNA binding data, a snapshot of a gene regulatory network was deduced where targets, such as AP2/ERF and bHLH transcription factors and chromatin remodelers form nodes. We show that the expression status of these nodal factors can be altered by inducing the OsMADS1-GR fusion protein and present a model for a regulatory cascade where the direct targets of OsMADS1, OsbHLH108/SPT, OsERF034, and OsHSF24, in turn control genes such as OsMADS32 and OsYABBY5 This cascade, with other similar relationships, cumulatively contributes to floral organ development. Overall, OsMADS1 binds to several regulatory genes and, probably in combination with other factors, controls a gene regulatory network that ensures rice floret development.


Asunto(s)
ADN de Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Secuencia de Bases , Sitios de Unión/genética , ADN de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Redes Reguladoras de Genes , Proteínas de Dominio MADS/metabolismo , Motivos de Nucleótidos/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant J ; 80(5): 883-94, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25279942

RESUMEN

Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes.


Asunto(s)
Flores/genética , Meristema/fisiología , Oryza/genética , Proteínas de Plantas/genética , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Metilación , Mutación , Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
9.
Plant Physiol ; 161(4): 1970-83, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23449645

RESUMEN

SEPALLATA (SEP) MADS box transcription factors mediate floral development in association with other regulators. Mutants in five rice (Oryza sativa) SEP genes suggest both redundant and unique functions in panicle branching and floret development. leafy hull sterile1/OsMADS1, from a grass-specific subgroup of LOFSEP genes, is required for specifying a single floret on the spikelet meristem and for floret organ development, but its downstream mechanisms are unknown. Here, key pathways and directly modulated targets of OsMADS1 were deduced from expression analysis after its knockdown and induction in developing florets and by studying its chromatin occupancy at downstream genes. The negative regulation of OsMADS34, another LOFSEP gene, and activation of OsMADS55, a SHORT VEGETATIVE PHASE-like floret meristem identity gene, show its role in facilitating the spikelet-to-floret meristem transition. Direct regulation of other transcription factor genes like OsHB4 (a class III homeodomain Leu zipper member), OsBLH1 (a BEL1-like homeodomain member), OsKANADI2, OsKANADI4, and OsETTIN2 show its role in meristem maintenance, determinacy, and lateral organ development. We found that the OsMADS1 targets OsETTIN1 and OsETTIN2 redundantly ensure carpel differentiation. The multiple effects of OsMADS1 in promoting auxin transport, signaling, and auxin-dependent expression and its direct repression of three cytokinin A-type response regulators show its role in balancing meristem growth, lateral organ differentiation, and determinacy. Overall, we show that OsMADS1 integrates transcriptional and signaling pathways to promote rice floret specification and development.


Asunto(s)
Flores/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Tipificación del Cuerpo/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Citocininas/metabolismo , Flores/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Prueba de Complementación Genética , Sitios Genéticos/genética , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/genética , Modelos Biológicos , Datos de Secuencia Molecular , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética
10.
Plant Cell Physiol ; 52(12): 2123-35, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22016342

RESUMEN

GH3 proteins control auxin homeostasis by inactivating excess auxin as conjugates of amino acids and sugars and thereby controlling cellular bioactive auxin. Since auxin regulates many aspects of plant growth and development, regulated expression of these genes offers a mechanism to control various developmental processes. OsMGH3/OsGH3-8 is expressed abundantly in rice florets and is regulated by two related and redundant transcription factors, OsMADS1 and OsMADS6, but its contribution to flower development is not known. We functionally characterize OsMGH3 by overexpression and knock-down analysis and show a partial overlap in these phenotypes with that of mutants in OsMADS1 and OsMADS6. The overexpression of OsMGH3 during the vegetative phase affects the overall plant architecture, whereas its inflorescence-specific overexpression creates short panicles with reduced branching, resembling in part the effects of OsMADS1 overexpression. In contrast, the down-regulation of endogenous OsMGH3 caused phenotypes consistent with auxin overproduction or activated signaling, such as ectopic rooting from aerial nodes. Florets in OsMGH3 knock-down plants were affected in carpel development and pollen viability, both of which reduced fertility. Some of these floret phenotypes are similar to osmads6 mutants. Taken together, we provide evidence for the functional significance of auxin homeostasis and its transcriptional regulation during rice panicle branching and floret organ development.


Asunto(s)
Flores/efectos de los fármacos , Flores/fisiología , Ácidos Indolacéticos/farmacología , Oryza/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Fertilidad/efectos de los fármacos , Flores/crecimiento & desarrollo , Flores/ultraestructura , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA