Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8013): 910-918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693263

RESUMEN

International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.


Asunto(s)
Carcinoma de Células Renales , Genoma Humano , Neoplasias Renales , Mutación , Humanos , Neoplasias Renales/genética , Neoplasias Renales/epidemiología , Neoplasias Renales/inducido químicamente , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/epidemiología , Carcinoma de Células Renales/inducido químicamente , Genoma Humano/genética , Ácidos Aristolóquicos/efectos adversos , Ácidos Aristolóquicos/toxicidad , Incidencia , Tailandia/epidemiología , Japón/epidemiología , Mutágenos/efectos adversos , Geografía , Factores de Riesgo , Rumanía/epidemiología , Obesidad/genética , Obesidad/epidemiología , Masculino , Hipertensión/genética , Hipertensión/epidemiología , Fumar Tabaco/efectos adversos , Fumar Tabaco/genética , Femenino
2.
BMC Genomics ; 24(1): 469, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605126

RESUMEN

BACKGROUND: All cancers harbor somatic mutations in their genomes. In principle, mutations affecting between one and fifty base pairs are generally classified as small mutational events. Conversely, large mutational events affect more than fifty base pairs, and, in most cases, they encompass copy-number and structural variants affecting many thousands of base pairs. Prior studies have demonstrated that examining patterns of somatic mutations can be leveraged to provide both biological and clinical insights, thus, resulting in an extensive repertoire of tools for evaluating small mutational events. Recently, classification schemas for examining large-scale mutational events have emerged and shown their utility across the spectrum of human cancers. However, there has been no computationally efficient bioinformatics tool that allows visualizing and exploring these large-scale mutational events. RESULTS: Here, we present a new version of SigProfilerMatrixGenerator that now delivers integrated capabilities for examining large mutational events. The tool provides support for examining copy-number variants and structural variants under two previously developed classification schemas and it supports data from numerous algorithms and data modalities. SigProfilerMatrixGenerator is written in Python with an R wrapper package provided for users that prefer working in an R environment. CONCLUSIONS: The new version of SigProfilerMatrixGenerator provides the first standardized bioinformatics tool for optimized exploration and visualization of two previously developed classification schemas for copy number and structural variants. The tool is freely available at https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an extensive documentation at https://osf.io/s93d5/wiki/home/ .


Asunto(s)
Algoritmos , Biología Computacional , Humanos , Mutación
3.
Nat Genet ; 55(4): 607-618, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36928603

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive cancer with rising incidence and challenging clinical management. Through a large series of whole-genome sequencing data, integrated with transcriptomic and epigenomic data using multiomics factor analysis, we demonstrate that the current World Health Organization classification only accounts for up to 10% of interpatient molecular differences. Instead, the MESOMICS project paves the way for a morphomolecular classification of MPM based on four dimensions: ploidy, tumor cell morphology, adaptive immune response and CpG island methylator profile. We show that these four dimensions are complementary, capture major interpatient molecular differences and are delimited by extreme phenotypes that-in the case of the interdependent tumor cell morphology and adapted immune response-reflect tumor specialization. These findings unearth the interplay between MPM functional biology and its genomic history, and provide insights into the variations observed in the clinical behavior of patients with MPM.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/complicaciones , Mesotelioma/genética , Mesotelioma/patología , Multiómica , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/genética
4.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778452

RESUMEN

Background: All cancers harbor somatic mutations in their genomes. In principle, mutations affecting between one and fifty base pairs are generally classified as small mutational events. Conversely, large mutational events affect more than fifty base pairs, and, in most cases, they encompass copy-number and structural variants affecting many thousands of base pairs. Prior studies have demonstrated that examining patterns of somatic mutations can be leveraged to provide both biological and clinical insights, thus, resulting in an extensive repertoire of tools for evaluating small mutational events. Recently, classification schemas for examining large-scale mutational events have emerged and shown their utility across the spectrum of human cancers. However, there has been no standard bioinformatics tool that allows visualizing and exploring these large-scale mutational events. Results: Here, we present a new version of SigProfilerMatrixGenerator that now delivers integrated capabilities for examining large mutational events. The tool provides support for examining copy-number variants and structural variants under two previously developed classification schemas and it supports data from numerous algorithms and data modalities. SigProfilerMatrixGenerator is written in Python with an R wrapper package provided for users that prefer working in an R environment. Conclusions: The new version of SigProfilerMatrixGenerator provides the first standardized bioinformatics tool for optimized exploration and visualization of two previously developed classification schemas for copy number and structural variants. The tool is freely available at https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an extensive documentation at https://osf.io/s93d5/wiki/home/ .

5.
Cell Genom ; 2(11): None, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36388765

RESUMEN

Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.

6.
Nature ; 606(7916): 984-991, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705804

RESUMEN

Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage-fusion-bridge cycles, among others, which may lead to chromosomal instability and aneuploidy1,2. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance3-5. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Neoplasias , Aneuploidia , Cromotripsis , Variaciones en el Número de Copia de ADN/genética , Haploidia , Recombinación Homóloga/genética , Humanos , Pérdida de Heterocigocidad/genética , Mutación , Neoplasias/genética , Neoplasias/patología , Secuenciación del Exoma
7.
Nature ; 602(7897): 510-517, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140399

RESUMEN

Clustered somatic mutations are common in cancer genomes and previous analyses reveal several types of clustered single-base substitutions, which include doublet- and multi-base substitutions1-5, diffuse hypermutation termed omikli6, and longer strand-coordinated events termed kataegis3,7-9. Here we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of cancer10. Clustered mutations were highly enriched in driver genes and associated with differential gene expression and changes in overall survival. Several distinct mutational processes gave rise to clustered indels, including signatures that were enriched in tobacco smokers and homologous-recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, whereas most multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 activity6, accounted for a large proportion of clustered substitutions; however, only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fuelling the evolution of ecDNA.


Asunto(s)
Neoplasias , Desaminasas APOBEC/genética , Genoma , Humanos , Mutación INDEL , Mutagénesis/genética , Mutación , Neoplasias/genética
8.
Nat Genet ; 53(11): 1553-1563, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663923

RESUMEN

Esophageal squamous cell carcinoma (ESCC) shows remarkable variation in incidence that is not fully explained by known lifestyle and environmental risk factors. It has been speculated that an unknown exogenous exposure(s) could be responsible. Here we combine the fields of mutational signature analysis with cancer epidemiology to study 552 ESCC genomes from eight countries with varying incidence rates. Mutational profiles were similar across all countries studied. Associations between specific mutational signatures and ESCC risk factors were identified for tobacco, alcohol, opium and germline variants, with modest impacts on mutation burden. We find no evidence of a mutational signature indicative of an exogenous exposure capable of explaining differences in ESCC incidence. Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC)-associated mutational signatures single-base substitution (SBS)2 and SBS13 were present in 88% and 91% of cases, respectively, and accounted for 25% of the mutation burden on average, indicating that APOBEC activation is a crucial step in ESCC tumor development.


Asunto(s)
Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/epidemiología , Carcinoma de Células Escamosas de Esófago/genética , Mutación , Desaminasas APOBEC/genética , Adulto , Anciano , Anciano de 80 o más Años , Aldehído Deshidrogenasa Mitocondrial/genética , Brasil/epidemiología , China/epidemiología , Femenino , Humanos , Incidencia , Irán/epidemiología , Masculino , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética , Reino Unido/epidemiología , Secuenciación Completa del Genoma
9.
Nat Genet ; 53(9): 1348-1359, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34493867

RESUMEN

Lung cancer in never smokers (LCINS) is a common cause of cancer mortality but its genomic landscape is poorly characterized. Here high-coverage whole-genome sequencing of 232 LCINS showed 3 subtypes defined by copy number aberrations. The dominant subtype (piano), which is rare in lung cancer in smokers, features somatic UBA1 mutations, germline AR variants and stem cell-like properties, including low mutational burden, high intratumor heterogeneity, long telomeres, frequent KRAS mutations and slow growth, as suggested by the occurrence of cancer drivers' progenitor cells many years before tumor diagnosis. The other subtypes are characterized by specific amplifications and EGFR mutations (mezzo-forte) and whole-genome doubling (forte). No strong tobacco smoking signatures were detected, even in cases with exposure to secondhand tobacco smoke. Genes within the receptor tyrosine kinase-Ras pathway had distinct impacts on survival; five genomic alterations independently doubled mortality. These findings create avenues for personalized treatment in LCINS.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , No Fumadores/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , Receptores ErbB/genética , Femenino , Genoma/genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores Androgénicos/genética , Factores de Riesgo , Fumar/genética , Enzimas Activadoras de Ubiquitina/genética , Secuenciación Completa del Genoma , Adulto Joven
10.
J Interprof Care ; 31(3): 282-290, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28276847

RESUMEN

Unresolved conflicts among healthcare professionals can lead to difficult patient care consequences. This scoping review examines the current healthcare literature that reported sources and consequences of conflict associated with individual, interpersonal, and organisational factors. We identified 99 articles published between 2001 and 2015 from PubMed, Cumulative Index to Nursing and Allied Health Literature, and Excerpta Medical Database. Most reviewed studies relied on healthcare professionals' perceptions and beliefs associated with conflict sources and consequences, with few studies reporting behavioural or organisational change outcomes. Individual conflict sources included personal traits, such as self-focus, self-esteem, or worldview, as well as individuals' conflict management styles. These conflicts posed threats to one's physical, mental, and emotional health and to one's ability to perform at work. Interpersonal dynamics were hampered by colleagues' uncivil behaviours, such as low degree of support, to more destructive behaviours including bullying or humiliation. Perceptions of disrespectful working environment and weakened team collaboration were the main interpersonal conflict consequences. Organisational conflict sources included ambiguity in professional roles, scope of practice, reporting structure, or workflows, negatively affecting healthcare professionals' job satisfactions and intent to stay. Future inquiries into healthcare conflict research may target the following: shifting from research involving single professions to multiple professions; dissemination of studies via journals that promote interprofessional research; inquiries into the roles of unconscious or implicit bias, or psychological capital (i.e., resilience) in healthcare conflict; and diversification of data sources to include hospital or clinic data with implications for conflict sources.


Asunto(s)
Actitud del Personal de Salud , Personal de Salud/organización & administración , Personal de Salud/psicología , Lugar de Trabajo/organización & administración , Lugar de Trabajo/psicología , Comunicación , Conducta Cooperativa , Estado de Salud , Humanos , Relaciones Interpersonales , Satisfacción en el Trabajo , Salud Mental , Personalidad , Rol Profesional , Conducta Social , Apoyo Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...