Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37765224

RESUMEN

Systemically administered chemotherapy reduces the efficiency of the anticancer agent at the target tumor tissue and results in distributed drug to non-target organs, inducing negative side effects commonly associated with chemotherapy and necessitating repeated administration. Injectable hydrogels present themselves as a potential platform for non-invasive local delivery vehicles that can serve as a slow-releasing drug depot that fills tumor vasculature, tissue, or resection cavities. Herein, we have systematically formulated and tested an injectable shear-thinning hydrogel (STH) with a highly manipulable release profile for delivering doxorubicin, a common chemotherapeutic. By detailed characterization of the STH physical properties and degradation and release dynamics, we selected top candidates for testing in cancer models of increasing biomimicry. Two-dimensional cell culture, tumor-on-a-chip, and small animal models were used to demonstrate the high anticancer potential and reduced systemic toxicity of the STH that exhibits long-term (up to 80 days) doxorubicin release profiles for treatment of breast cancer and glioblastoma. The drug-loaded STH injected into tumor tissue was shown to increase overall survival in breast tumor- and glioblastoma-bearing animal models by 50% for 22 days and 25% for 52 days, respectively, showing high potential for localized, less frequent treatment of oncologic disease with reduced dosage requirements.

2.
Nanotheranostics ; 6(4): 350-364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707061

RESUMEN

Recent years have seen considerable progress in the development of nanomedicine by the advent of 2D nanomaterials serving as ideal platforms to integrate multiple theranostic functions. We synthesized multifunctional stimuli-responsive 2D-based smart nanocomposites (NCs), comprising gold nanoparticles (AuNPs) and superparamagnetic iron oxides (SPIOs) scaffolded within graphene oxide (GO) nanosheets, coated with doxorubicin (DOX)-loaded 1-tetradecanol (TD), and further modified with an alginate (Alg) polymer. TD is a phase-change material (PCM) that confines DOX molecules to the GO surface and melts when the temperature exceeds its melting point (Tm=39 °C), causing the PCM to release its drug payload. By virtue of their strong near-infrared (NIR) light absorption and high photothermal conversion efficiency, GO nanosheets may enable photothermal therapy (PTT) and activate a phase change to trigger DOX release. Upon NIR irradiation of NCs, a synergistic thermo-chemotherapeutic effect can be obtained by GO-mediated PTT, resulting an accelerated and controllable drug release through the PCM mechanism. The biodistribution of these NCs could also be imaged with computed tomography (CT) and magnetic resonance (MR) imaging in vitro and in vivo. Hence, this multifunctional nanotheranostic platform based on 2D nanomaterials appears a promising candidate for multimodal image-guided cancer therapy.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Liberación de Fármacos , Oro , Grafito , Imagen por Resonancia Magnética , Nanomedicina Teranóstica/métodos , Distribución Tisular , Tomografía Computarizada por Rayos X
3.
Lasers Med Sci ; 37(5): 2387-2395, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35066676

RESUMEN

The combination of multiple therapeutic and diagnostic functions is fast becoming a key feature in the area of clinical oncology. The advent of nanotechnology promises multifunctional nanoplatforms with the potential to deliver multiple therapeutics while providing diagnostic information simultaneously. In this study, novel iron oxide-gold core-shell hybrid nanocomposites (Fe3O4@Au HNCs) coated with alginate hydrogel carrying doxorubicin (DOX) were constructed for targeted photo-chemotherapy and magnetic resonance imaging (MRI). The magnetic core enables the HNCs to be detected through MRI and targeted towards the tumor using an external magnetic field, a method known as magnetic drug targeting (MDT). The Au shell could respond to light in the near-infrared (NIR) region, generating a localized heating for photothermal therapy (PTT) of the tumor. The cytotoxicity assay showed that the treatment of CT26 colon cancer cells with the DOX-loaded HNCs followed by laser irradiation induced a significantly higher cell death as opposed to PTT and chemotherapy alone. The in vivo MRI study proved MDT to be an effective strategy for targeting the HNCs to the tumor, thereby enhancing their intratumoral concentration. The antitumor study revealed that the HNCs can successfully combine chemotherapy and PTT, resulting in superior therapeutic outcome. Moreover, the use of MDT following the injection of HNCs caused a more extensive tumor shrinkage as compared to non-targeted group. Therefore, the as-prepared HNCs could be a promising nanoplatform for image-guided targeted combination therapy of cancer.


Asunto(s)
Nanocompuestos , Neoplasias , Línea Celular Tumoral , Doxorrubicina , Oro/uso terapéutico , Humanos , Imagen por Resonancia Magnética , Neoplasias/terapia , Fototerapia
4.
Free Radic Biol Med ; 169: 84-98, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33857627

RESUMEN

Whereas the anti-neoplastic activity of extremely low frequency magnetic fields (ELF-EMF) is well-documented in literature, little is known about its underlying anti-cancer mechanisms and induced types of cell death. Here, for the first time, we reported induction of necroptosis, a specific type of programed necrotic cell death, in MC4-L2 breast cancer cell lines following a 2 h/day exposure to a 100 Hz, 1 mT ELF-EMF for five days. For in vivo assessment, inbred BALB/c mice bearing established MC-4L2 tumors were exposed to 100 mT, 1 Hz ELF-EMF 2 h daily for a period of 28-day, following which tumors were dissected and fixed for evaluation of tumor biomarkers expression and types of cell death induced using TUNEL assay, Immunohistochemistry and H&E staining. Peripheral blood samples were also collected for assessing pro-inflammatory cytokine profile following exposure. An exaggerated proinflammatory response evident form enhancement of IFN-γ (4.8 ± 0.24 folds) and TNF-α (3.1 ± 0.19 folds) and number of tumors infiltrating lymphocytes (TILs), specially CD8+ Th cells (~20 folds), proposed occurrence of necroptosis in vivo. Meanwhile, exposure could effectively suppress tumor growth and expression of Ki-67, CD31, VEGFR2 and MMP-9. In vitro studies on ELF-EMF exposed MC-4L2 cells demonstrated a meaningful increase in phosphorylation of RIPK1/RIPK3/MLKL proteins and cleavage of caspase-9/caspase-3, confirming occurrence of both necroptosis and apoptosis. Complementary in vitro studies by treating ELF-EMF exposed MC-4L2 cells with verapamil (a calcium channel inhibitor), N-acetyl cysteine (a ROS scavenger) or calcium chloride confirmed the role of elevated intracellular calcium and ROS levels in ELF-EMF induced necroptosis.


Asunto(s)
Necroptosis , Neoplasias , Animales , Campos Electromagnéticos , Ratones , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno
5.
J Cancer Res Clin Oncol ; 145(5): 1213-1219, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30847551

RESUMEN

Recent efforts in the area of photothermal therapy (PTT) follow two important aims: (i) selective targeting of plasmonic nanoparticles to the tumor and (ii) real-time guidance of PTT operation through employing multimodal imaging modalities. In the present study, we utilized a multifunctional theranostic nanoplatform constructed from iron (III) oxide-gold (Fe2O3@Au) core-shell nanoparticles to fulfill these aims. The Au shell exhibits surface plasmon resonance, a property that is exploited to realize PTT. The magnetic core enables Fe2O3@Au to be employed as a magnetic resonance imaging (MRI) contrast agent. Furthermore, the magnetic core has the potential to establish a magnetic drug targeting strategy through which Fe2O3@Au can be directed to the tumor site by means of magnetic field. To test these potentials, Balb/c mice bearing CT26 colorectal tumor model were intravenously injected with Fe2O3@Au. Immediately after injection, a magnet was placed on the tumor site for 3 h to concentrate nanoparticles, followed by the near infrared (NIR) laser irradiation. MRI study confirmed the accumulation of nanoparticles within the tumor due to T2 enhancement capability of Fe2O3@Au. The in vivo thermometry results demonstrated that the tumors in magnetic targeting group had a significantly higher temperature elevation rate upon NIR irradiation than non-targeted group (~ 12 °C vs. 8.5 °C). The in vivo antitumor assessment revealed that systemic injection of Fe2O3@Au in combination with magnetic targeting and NIR irradiation resulted in complete remission of tumor growth. Therefore, Fe2O3@Au can establish a targeted PTT strategy for efficient eradication of tumor cells under the guidance of MRI.


Asunto(s)
Compuestos Férricos , Oro , Hipertermia Inducida , Imagen por Resonancia Magnética , Nanoestructuras , Fototerapia , Nanomedicina Teranóstica , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Compuestos Férricos/química , Oro/química , Humanos , Hipertermia Inducida/métodos , Rayos Infrarrojos , Imagen por Resonancia Magnética/métodos , Ratones , Nanoestructuras/química , Nanoestructuras/ultraestructura , Neoplasias/patología , Neoplasias/terapia , Fototerapia/métodos , Análisis Espectral , Nanomedicina Teranóstica/métodos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Oman Med J ; 33(2): 141-147, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29657683

RESUMEN

OBJECTIVES: Due to increasing cardiac disease and its mortality rate, the frequency of cardiac imaging has grown and, as a result, interventional cardiologists potentially receive high radiation doses in cardiac examinations. This study aimed to assess the knowledge, attitude, and practice (KAP) level of radiation protection (RP) among interventional radiology staff in Iranian health care centers across the country. METHODS: We used a validated questionnaire survey consisting of 30 multiple-choice questions to perform a cross-sectional study. Participants were healthcare personnel working professionally with radiation at different levels (i.e., secretary, radiology technologists, nurse, and physician). The questionnaire was divided into three sections to assess KAP regarding RP. RESULTS: Significant differences exist in RP KAP mean scores based on educational age (p < 0.050). There was no significant difference in RP KAP mean scores when looking at sex, practice age, and hospital type (p > 0.050). We found a significant difference between RP KAP mean scores and different regions (p < 0.050). CONCLUSIONS: Educational and practice age, sex, type of hospital, and geographical region affect he KAP of interventional radiology staff regarding RP. Since many of the subjective radiation harms for both medical team and patients, this can be easily controlled and prevented; a checkup for personnel of interventional radiology departments, considering samples from different parts of the country with different levels of education, continuous training, and practical courses may help map the status of KAP. The results of this study may also help authorized health physics officers design strategic plans to enhance the quality of such services in radiation departments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...