Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Trends Pharmacol Sci ; 45(3): 210-224, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38355324

RESUMEN

Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.


Asunto(s)
Aneuploidia , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inestabilidad Cromosómica
2.
Proteomics ; : e2300089, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38168906

RESUMEN

Much recent research has been dedicated to exploring the utility of extracellular vesicles (EVs) as circulating disease biomarkers. Underpinning this work is the assumption that the molecular cargo of EVs directly reflects the originating cell. Few attempts have been made, however, to empirically validate this on the -omic level. To this end, we have performed an integrative multi-omic analysis of a panel of breast cancer cell lines and corresponding EVs. Whole transcriptome analysis validated that the cellular transcriptome remained stable when cultured cells are transitioned to low serum or serum-free medium for EV collection. Transcriptomic profiling of the isolated EVs indicated a positive correlation between transcript levels in cells and EVs, including disease-associated transcripts. Analysis of the EV proteome verified that HER2 protein is present in EVs, however neither the estrogen (ER) nor progesterone (PR) receptor proteins are detected regardless of cellular expression. Using multivariate analysis, we derived an EV protein signature to infer cellular patterns of ER and HER2 expression, though the ER protein could not be directly detected. Integrative analyses affirmed that the EV proteome and transcriptome captured key phenotypic hallmarks of the originating cells, supporting the potential of EVs for non-invasive monitoring of breast cancers.

3.
J Exp Clin Cancer Res ; 42(1): 90, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072858

RESUMEN

BACKGROUND: Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS: As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS: A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION: Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.


Asunto(s)
Cobre , Neoplasias , Animales , Ratones , Diferenciación Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Transducción de Señal
4.
Exp Hematol Oncol ; 12(1): 4, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624493

RESUMEN

BACKGROUND: αB-Crystallin is a heat shock chaperone protein which binds to misfolded proteins to prevent their aggregation. It is overexpressed in a wide-variety of cancers. Previous studies using human cancer cell lines and human xenograft models have suggested potential tumor promoter (oncogene) roles for αB-Crystallin in a wide-spectrum of cancers. METHODS: To determine the causal relationship between CRYAB overexpression and cancer, we generated a Cryab overexpression knock-in mouse model and monitor them for development of spontaneous and carcinogen (DMBA)-induced tumorigenesis. In order to investigate the mechanism of malignancies observed in this model multiple techniques were used such as immunohistochemical characterizations of tumors, bioinformatics analysis of publically available human tumor datasets, and generation of mouse embryonic fibroblasts (MEFs) for in vitro assays (clonogenic survival and migration assays and proteome analysis by mass-spectrometry). RESULTS: This model revealed that constitutive overexpression of Cryab results in the formation of a variety of lethal spontaneous primary and metastatic tumors in mice. In vivo, the overexpression of Cryab correlated with the upregulation of epithelial-to-mesenchymal (EMT) markers, angiogenesis and some oncogenic proteins including Basigin. In vitro, using E1A/Ras transformed MEFs, we observed that the overexpression of Cryab led to the promotion of cell survival via upregulation of Akt signaling and downregulation of pro-apoptotic pathway mediator JNK, with subsequent attenuation of apoptosis as assessed by cleaved caspase-3 and Annexin V staining. CONCLUSIONS: Overall, through the generation and characterization of Cryab overexpression model, we provide evidence supporting the role of αB-Crystallin as an oncogene, where its upregulation is sufficient to induce tumors, promote cell survival and inhibit apoptosis.

5.
Mol Ther ; 31(3): 729-743, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560881

RESUMEN

Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.


Asunto(s)
Auranofina , Genes myc , Glutamina , Neoplasias Ováricas , Reductasa de Tiorredoxina-Disulfuro , Femenino , Humanos , Auranofina/farmacología , Auranofina/uso terapéutico , Línea Celular Tumoral , Genes myc/genética , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/genética , Glutamina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
J Exp Clin Cancer Res ; 41(1): 355, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36539830

RESUMEN

BACKGROUND: High-grade serous ovarian carcinomas (HGSCs) are a heterogeneous subtype of epithelial ovarian cancers and include serous cancers arising in the fallopian tube and peritoneum. These cancers are now subdivided into homologous recombination repair (HR)-deficient and proficient subgroups as this classification impacts on management and prognosis. PARP inhibitors (PARPi) have shown significant clinical efficacy, particularly as maintenance therapy following response to platinum-based chemotherapy in BRCA-mutant or homologous recombination (HR)-deficient HGSCs in both the 1st and 2nd line settings. However, PARPi have limited clinical benefit in HR-proficient HGSCs which make up almost 50% of HGSC and improving outcomes in these patients is now a high priority due to the poor prognosis with ineffectiveness of the current standard of care. There are a number of potential lines of investigation including efforts in sensitizing HR-proficient tumors to PARPi. Herein, we aimed to develop a novel combination therapy by targeting SSRP1 using a small molecule inhibitor CBL0137 with PARPi in HR-proficient HGSCs. EXPERIMENTAL DESIGN: We tested anti-cancer activity of CBL0137 monotherapy using a panel of HGSC cell lines and patient-derived tumor cells in vitro. RNA sequencing was used to map global transcriptomic changes in CBL0137-treated patient-derived HR-proficient HGSC cells. We tested efficacy of CBL0137 in combination with PARPi using HGSC cell lines and patient-derived tumor cells in vitro and in vivo. RESULTS: We show that SSRP1 inhibition using a small molecule, CBL0137, that traps SSRP1 onto chromatin, exerts a significant anti-growth activity in vitro against HGSC cell lines and patient-derived tumor cells, and also reduces tumor burden in vivo. CBL0137 induced DNA repair deficiency via inhibition of the HR repair pathway and sensitized SSRP1-high HR-proficient HGSC cell lines and patient-derived tumor cells/xenografts to the PARPi, Olaparib in vitro and in vivo. CBL0137 also enhanced the efficacy of DNA damaging platinum-based chemotherapy in HGSC patient-derived xenografts. CONCLUSION: Our findings strongly suggest that combination of CBL0137 and PARP inhibition represents a novel therapeutic strategy for HR-proficient HGSCs that express high levels of SSRP1 and should be investigated in the clinic.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN por Recombinación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Elongación Transcripcional/genética
7.
NPJ Breast Cancer ; 8(1): 57, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501337

RESUMEN

Intratumoral heterogeneity is caused by genomic instability and phenotypic plasticity, but how these features co-evolve remains unclear. SOX10 is a neural crest stem cell (NCSC) specifier and candidate mediator of phenotypic plasticity in cancer. We investigated its relevance in breast cancer by immunophenotyping 21 normal breast and 1860 tumour samples. Nuclear SOX10 was detected in normal mammary luminal progenitor cells, the histogenic origin of most TNBCs. In tumours, nuclear SOX10 was almost exclusive to TNBC, and predicted poorer outcome amongst cross-sectional (p = 0.0015, hazard ratio 2.02, n = 224) and metaplastic (p = 0.04, n = 66) cases. To understand SOX10's influence over the transcriptome during the transition from normal to malignant states, we performed a systems-level analysis of co-expression data, de-noising the networks with an eigen-decomposition method. This identified a core module in SOX10's normal mammary epithelial network that becomes rewired to NCSC genes in TNBC. Crucially, this reprogramming was proportional to genome-wide promoter methylation loss, particularly at lineage-specifying CpG-island shores. We propose that the progressive, genome-wide methylation loss in TNBC simulates more primitive epigenome architecture, making cells vulnerable to SOX10-driven reprogramming. This study demonstrates potential utility for SOX10 as a prognostic biomarker in TNBC and provides new insights about developmental phenotypic mimicry-a major contributor to intratumoral heterogeneity.

8.
Sci Rep ; 11(1): 20256, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642383

RESUMEN

Maintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína de Replicación A/metabolismo , Rayos Ultravioleta/efectos adversos , Animales , Línea Celular , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/efectos de la radiación , Células HeLa , Humanos , Fosforilación/efectos de la radiación , Regulación hacia Arriba
9.
PLoS Genet ; 17(10): e1009334, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34710087

RESUMEN

Homozygous nonsense mutations in CEP55 are associated with several congenital malformations that lead to perinatal lethality suggesting that it plays a critical role in regulation of embryonic development. CEP55 has previously been studied as a crucial regulator of cytokinesis, predominantly in transformed cells, and its dysregulation is linked to carcinogenesis. However, its molecular functions during embryonic development in mammals require further investigation. We have generated a Cep55 knockout (Cep55-/-) mouse model which demonstrated preweaning lethality associated with a wide range of neural defects. Focusing our analysis on the neocortex, we show that Cep55-/- embryos exhibited depleted neural stem/progenitor cells in the ventricular zone as a result of significantly increased cellular apoptosis. Mechanistically, we demonstrated that Cep55-loss downregulates the pGsk3ß/ß-Catenin/Myc axis in an Akt-dependent manner. The elevated apoptosis of neural stem/progenitors was recapitulated using Cep55-deficient human cerebral organoids and we could rescue the phenotype by inhibiting active Gsk3ß. Additionally, we show that Cep55-loss leads to a significant reduction of ciliated cells, highlighting a novel role in regulating ciliogenesis. Collectively, our findings demonstrate a critical role of Cep55 during brain development and provide mechanistic insights that may have important implications for genetic syndromes associated with Cep55-loss.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Neocórtex/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Animales , Apoptosis/fisiología , Carcinogénesis/metabolismo , Células Cultivadas , Citocinesis/fisiología , Homocigoto , Humanos , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Fenotipo
10.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34359683

RESUMEN

The overexpression of BRF2, a selective subunit of RNA polymerase III, has been shown to be crucial in the development of several types of cancers, including breast cancer and lung squamous cell carcinoma. Predominantly, BRF2 acts as a central redox-sensing transcription factor (TF) and is involved in rescuing oxidative stress (OS)-induced apoptosis. Here, we showed a novel link between BRF2 and the DNA damage response. Due to the lack of BRF2-specific inhibitors, through virtual screening and molecular dynamics simulation, we identified potential drug candidates that interfere with BRF2-TATA-binding Protein (TBP)-DNA complex interactions based on binding energy, intermolecular, and torsional energy parameters. We experimentally tested bexarotene as a potential BRF2 inhibitor. We found that bexarotene (Bex) treatment resulted in a dramatic decline in oxidative stress and Tert-butylhydroquinone (tBHQ)-induced levels of BRF2 and consequently led to a decrease in the cellular proliferation of cancer cells which may in part be due to the drug pretreatment-induced reduction of ROS generated by the oxidizing agent. Our data thus provide the first experimental evidence that BRF2 is a novel player in the DNA damage response pathway and that bexarotene can be used as a potential inhibitor to treat cancers with the specific elevation of oxidative stress.

11.
Cancers (Basel) ; 13(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34283051

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive breast cancer with limited treatment options. Glycosylation has been implicated in cancer development, but TNBC-specific glycosylation pathways have not been examined. Here, we applied bioinformatic analyses on public datasets to discover TNBC-specific glycogenes and pathways, as well as their upstream regulatory mechanisms. Unsupervised clustering of 345 glycogene expressions in breast cancer datasets revealed a relative homogenous expression pattern in basal-like TNBC subtype. Differential expression analyses of the 345 glycogenes between basal-like TNBC (hereafter termed TNBC) and other BC subtypes, or normal controls, revealed 84 differential glycogenes in TNBC. Pathway enrichment showed two common TNBC-enriched pathways across all three datasets, cell cycle and lacto-/neolacto- glycosphingolipid (GSL) biosynthesis, while a total of four glycosylation-related pathways were significantly enriched in TNBC. We applied a selection criterion of the top 50% differential anabolic/catabolic glycogenes in the enriched pathways to define 34 TNBC-specific glycogenes. The lacto-/neolacto- GSL biosynthesis pathway was the most highly enriched, with seven glycogenes all up-regulated in TNBC. This data led us to investigate the hypothesis that a common upstream mechanism in TNBC up-regulates the lacto-/neolacto-GSL biosynthesis pathway. Using public multi-omic datasets, we excluded the involvement of copy-number alteration and DNA methylation, but identified three transcription factors (AR, GATA3 and ZNG622) that each target three candidate genes in the lacto-/neolacto- GSL biosynthesis pathway. Interestingly, a subset of TNBC has been reported to express AR and GATA3, and AR antagonists are being trialed for TNBC. Our findings suggest that AR and GATA3 may contribute to TNBC via GSL regulation, and provide a list of candidate glycogenes for further investigation.

12.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071360

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.


Asunto(s)
Benzotiazoles/farmacología , Daño del ADN , Replicación del ADN/efectos de los fármacos , Naftiridinas/farmacología , Quinuclidinas/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Replicación del ADN/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
13.
Elife ; 102021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34142659

RESUMEN

Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion. Cellular and cell-free expression assays revealed a direct interaction between BRCA1 and cavin3 that occurs when cavin3 is released from caveolae that are disassembled in response to UV and mechanical stress. Overexpression and RNAi-depletion revealed that cavin3 sensitized various cancer cells to UV-induced apoptosis. Supporting a role in DNA repair, cavin3-deficient cells were sensitive to PARP inhibition, where concomitant depletion of 53BP1 restored BRCA1-dependent sensitivity to PARP inhibition. We conclude that cavin3 functions together with BRCA1 in multiple cancer-related pathways. The loss of cavin3 function may provide tumor cell survival by attenuating apoptotic sensitivity and hindering DNA repair under chronic stress conditions.


When cells become cancerous they often stop making certain proteins. This includes a protein known as cavin3 which resides in bulb-shaped pits of the membrane that surrounds the cell called caveolae. These structures work like stress detectors, picking up changes in the membrane and releasing proteins, such as cavin3, into the cell's interior. Past studies suggest that cavin3 might interact with a protein called BRCA1 that suppresses the formation of tumors. Cells with mutations in the gene for BRCA1 struggle to fix damage in their DNA, and have to rely on other repair proteins, such as PARPs (short for poly (ADP-ribose) polymerases). Blocking PARP proteins with drugs can kill cancer cells with problems in their BRCA1 proteins. However, it was unclear what role cavin3 plays in this mechanism. To investigate this, McMahon et al. exposed cells grown in the laboratory to DNA-damaging UV light to stimulate the release of cavin3 from caveolae. This revealed that cavin3 interacts with BRCA1 when cells are under stress, and helps stabilize the protein so it can perform DNA repairs. Cells without cavin3 showed decreased levels of the BRCA1 protein, but compensated for the loss of BRCA1 by increasing the levels of their PARP proteins. These cells also had increased DNA damage following treatment with drugs that block PARPs, similar to cancer cells carrying mutations in the gene for BRCA1. These findings suggest that cavin3 helps BRCA1 to suppress the formation of tumors, and therefore should be considered when developing new anti-cancer treatments.


Asunto(s)
Proteína BRCA1/metabolismo , Caveolas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Estrés Fisiológico/genética , Apoptosis/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteoma/genética , Proteómica
14.
Commun Biol ; 4(1): 645, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059773

RESUMEN

WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/genética , Proteínas del Tejido Nervioso/metabolismo , Espermatogénesis/genética , Animales , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Centriolos/metabolismo , Citoesqueleto/metabolismo , Femenino , Masculino , Meiosis , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Espermátides/metabolismo , Espermatogénesis/fisiología , Espermatozoides/metabolismo , Testículo/metabolismo
15.
Commun Biol ; 3(1): 593, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087841

RESUMEN

High expression of centrosomal protein CEP55 has been correlated with clinico-pathological parameters across multiple human cancers. Despite significant in vitro studies and association of aberrantly overexpressed CEP55 with worse prognosis, its causal role in vivo tumorigenesis remains elusive. Here, using a ubiquitously overexpressing transgenic mouse model, we show that Cep55 overexpression causes spontaneous tumorigenesis and accelerates Trp53+/- induced tumours in vivo. At the cellular level, using mouse embryonic fibroblasts (MEFs), we demonstrate that Cep55 overexpression induces proliferation advantage by modulating multiple cellular signalling networks including the hyperactivation of the Pi3k/Akt pathway. Notably, Cep55 overexpressing MEFs have a compromised Chk1-dependent S-phase checkpoint, causing increased replication speed and DNA damage, resulting in a prolonged aberrant mitotic division. Importantly, this phenotype was rescued by pharmacological inhibition of Pi3k/Akt or expression of mutant Chk1 (S280A) protein, which is insensitive to regulation by active Akt, in Cep55 overexpressing MEFs. Moreover, we report that Cep55 overexpression causes stabilized microtubules. Collectively, our data demonstrates causative effects of deregulated Cep55 on genome stability and tumorigenesis which have potential implications for tumour initiation and therapy development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Transformación Celular Neoplásica/genética , Expresión Génica , Inestabilidad Genómica , Animales , Biomarcadores de Tumor , Biopsia , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Transformación Celular Neoplásica/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Susceptibilidad a Enfermedades , Fibroblastos/metabolismo , Genotipo , Inmunohistoquímica , Cariotipo , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Mitosis , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Estrés Fisiológico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Theranostics ; 10(18): 7974-7992, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32724453

RESUMEN

Breast cancer (BC) is one of the most common cancers in women. TNBC (Triple-negative breast cancer) has limited treatment options and still lacks viable molecular targets, leading to poor outcomes. Recently, RNA-binding proteins (RBPs) have been shown to play crucial roles in human cancers, including BC, by modulating a number of oncogenic phenotypes. This suggests that RBPs represent potential molecular targets for BC therapy. Methods: We employed genomic data to identify RBPs specifically expressed in TNBC. NONO was silenced in TNBC cell lines to examine cell growth, colony formation, invasion, and migration. Gene expression profiles in NONO-silenced cells were generated and analyzed. A high-throughput screening for NONO-targeted drugs was performed using an FDA-approved library. Results: We found that the NONO RBP is highly expressed in TNBC and is associated with poor patient outcomes. NONO binds to STAT3 mRNA, increasing STAT3 mRNA levels in TNBC. Surprisingly, NONO directly interacts with STAT3 protein increasing its stability and transcriptional activity, thus contributing to its oncogenic function. Importantly, high-throughput drug screening revealed that auranofin is a potential NONO inhibitor and inhibits cell growth in TNBC. Conclusions: NONO is an RBP upstream regulator of both STAT3 RNA and protein levels and function. It represents an important and clinically relevant promoter of growth and resistance of TNBCs. NONO is also therefore a potential therapeutic target in TNBC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Portadores de Fármacos/química , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Nanopartículas/química , Medicina de Precisión/métodos , Proteínas de Unión al ARN/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Nanomedicina Teranóstica/métodos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
17.
Mol Cell Oncol ; 7(3): 1735910, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391427

RESUMEN

Genetic and genomic alterations drive cancer development. However, they may also constitute vulnerabilities, including increased drug sensitivity, which could be harnessed for precision medicine purposes. We discuss the highly complex pharmacogenomic interactions that are beginning to be disentangled and hurdles that may need to be overcome before cancer patients could benefit.

18.
Nat Commun ; 11(1): 2641, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457376

RESUMEN

Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.


Asunto(s)
Benzotiazoles/farmacología , Cistadenocarcinoma Seroso/tratamiento farmacológico , Daño del ADN , Naftiridinas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Femenino , Xenoinjertos , Recombinación Homóloga , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Modelos Biológicos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , ARN Polimerasa I/antagonistas & inhibidores , Transcriptoma
19.
Theranostics ; 10(12): 5259-5275, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373211

RESUMEN

Purpose: Lacking effective targeted therapies, triple-negative breast cancer (TNBCs) is highly aggressive and metastatic disease, and remains clinically challenging breast cancer subtype to treat. Despite the survival dependency on the proteasome pathway genes, FDA-approved proteasome inhibitors induced minimal clinical response in breast cancer patients due to weak proteasome inhibition. Hence, developing effective targeted therapy using potent proteasome inhibitor is required. Methods: We evaluated anti-cancer activity of a potent proteasome inhibitor, marizomib, in vitro using breast cancer lines and in vivo using 4T1.2 murine syngeneic model, MDA-MB-231 xenografts, and patient-derived tumor xenografts. Global proteome profiling, western blots, and RT-qPCR were used to investigate the mechanism of action for marizomib. Effect of marizomib on lung and brain metastasis was evaluated using syngeneic 4T1BR4 murine TNBC model in vivo. Results: We show that marizomib inhibits multiple proteasome catalytic activities and induces a better anti-tumor response in TNBC cell lines and patient-derived xenografts alone and in combination with the standard-of-care chemotherapy. Mechanistically, we show that marizomib is a dual inhibitor of proteasome and oxidative phosphorylation (OXPHOS) in TNBCs. Marizomib reduces lung and brain metastases by reducing the number of circulating tumor cells and the expression of genes involved in the epithelial-to-mesenchymal transition. We demonstrate that marizomib-induced OXPHOS inhibition upregulates glycolysis to meet the energetic demands of TNBC cells and combined inhibition of glycolysis with marizomib leads to a synergistic anti-cancer activity. Conclusions: Our data provide a strong rationale for a clinical evaluation of marizomib in primary and metastatic TNBC patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Lactonas/uso terapéutico , Complejo de la Endopetidasa Proteasomal/metabolismo , Pirroles/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Ratones , Fosforilación Oxidativa/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Inhibidores de Proteasoma/uso terapéutico , Neoplasias de la Mama Triple Negativas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Crit Rev Biochem Mol Biol ; 55(1): 54-70, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32183544

RESUMEN

Breast cancer is the most commonly diagnosed malignancy in woman worldwide, and is the second most common cause of death in developed countries. The transformation of a normal cell into a malignant derivate requires the acquisition of diverse genomic and proteomic changes, including enzymatic post-translational modifications (PTMs) on key proteins encompassing critical cell signaling events. PTMs occur on proteins after translation, and regulate several aspects of proteins activity, including their localization, activation and turnover. Deregulation of PTMs can potentially lead to tumorigenesis, and several de-regulated PTM pathways contribute to abnormal cell proliferation during breast tumorigenesis. SUMOylation is a PTM that plays a pivotal role in numerous aspects of cell physiology, including cell cycle regulation, protein trafficking and turnover, and DNA damage repair. Consistently with this, the deregulation of the SUMO pathway is observed in different human pathologies, including breast cancer. In this review we will describe the role of SUMOylation in breast tumorigenesis and its implication for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Carcinogénesis/metabolismo , Proteínas de Neoplasias/metabolismo , Sumoilación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Proliferación Celular/genética , Daño del ADN , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Humanos , Proteínas de Neoplasias/genética , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...