Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Genet Genomics ; 296(2): 391-408, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33464396

RESUMEN

Soil salinity negatively impacts rapeseed (Brassica napus) crop production. In particular, high soil salinity is known to hinder seedling growth and establishment. Identifying natural genetic variation for high salt tolerance in Brassica napus seedlings is an effective way to breed for improved productivity under salt stress. To identify genetic variants involved in differential response to salt stress, we evaluated a diverse association panel of 228 Brasica napus accessions for four seedling traits under salt stress to establish stress susceptibility index (SSI) and stress tolerance index (STI) values, and performed genome-wide association studies (GWAS) using 201,817 high-quality single nucleotide polymorphic (SNP) markers. Our GWAS identified 142 significant SNP markers strongly associated with salt tolerance distributed across all rapeseed chromosomes, with 78 SNPs in the C genome and 64 SNPs in the A genome, and our analyses subsequently pinpointed both favorable alleles and elite cultivars. We identified 117 possible candidate genes associated with these SNPs: 95/117 were orthologous with Arabidopsis thaliana genes encoding transcription factors, aquaporins, and binding proteins. The expression level of ten candidate genes was validated by quantitative real-time PCR (qRT-PCR), and these genes were found to be differentially expressed between salt-tolerant and salt-susceptible lines under salt stress conditions. Our results provide new genetic resources and information for improving salt tolerance in rapeseed genotypes at the seed germination and seedling stages via genomic or marker-assisted selection, and for future functional characterization of putative gene candidates.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Tolerancia a la Sal , Brassica napus/genética , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Germinación , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo
2.
Physiol Mol Biol Plants ; 26(9): 1897-1910, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32939107

RESUMEN

Phosphorus (P) is one of the essential macronutrients for rice. In this study, we used 120 rice backcross recombinant inbred lines (BRILs) derived from a cross indica cv. Changhui 891 and japonica cv. 02428. To elucidate the genetic control of P deficiency tolerance in rice, we have used high quality SNPs bin markers to identify some important loci underlying phosphorus deficiency. The bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. Based on this map, 50 loci, including four novel loci, qSL-3, qRL-11, qSDW-1, qRDW-1 with phenotypic variance 23.26%, 12.06%, 9.89% associated with P deficiency-related seedling traits were identified. No significant QTLs was found for root length under P+, shoot fresh weight P- and root length, shoot fresh weight for P+, P- and their ratio respectively. Root fresh weight, and root dry weight were strongly correlated to each other, and QTLs for these variables were located on the same chromosome 1 at the same region. Notably, 3 pleiotropic regions is the pioneer of our study, and these regions would facilitate map-based cloning to expedite the MAS selection for developing low phosphorous tolerant varieties. This study not only improves our knowledge about molecular processes associated with P deficiency, but also provides useful information to understand the genetic architecture of low phosphorous tolerance.

3.
J Adv Res ; 24: 447-461, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32577311

RESUMEN

Drought seriously curtails growth, physiology and productivity in rapeseed (Brassica napus). Although drought tolerance is a complex trait, efficient phenotyping and genotyping has led to the identification of novel marker-trait associations underlying drought tolerance. A diverse panel of 228 Brassica accessions was phenotyped under normal (without stress) and water-stress conditions, simulated by polyethylene glycol (PEG-6000) (15% PEG stress) at the seedling stage; stress tolerance index (STI) and stress susceptibility index (SSI) values were acquired. Genome-wide association studies (GWAS) using 201 817 high quality SNPs identified 314 marker-trait associations strongly linked with drought indices and distributed across all nineteen chromosomes in both the A and C genomes. None of these quantitative trait loci (QTL) had been previously identified by other studies. We identified 85 genes underlying these QTL (most within 100 kb of associated SNPs) which were orthologous to Arabidopsis genes known to be associated with drought tolerance. Our study provides a novel resource for breeding drought-tolerant Brassica crops.

4.
Rice (N Y) ; 11(1): 37, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29904811

RESUMEN

BACKGROUND: Despite the great contributions of utilizing heterosis to crop productivity worldwide, the molecular mechanism of heterosis remains largely unexplored. Thus, the present research is focused on the grain number heterosis of a widely used late-cropping indica super hybrid rice combination in China using a high-throughput next-generation RNA-seq strategy. RESULTS: Here, we obtained 872 million clean reads, and at least one read could maps 27,917 transcripts out of 35,679 annotations. Transcript differential expression analysis revealed a total of 5910 differentially expressed genes (DGHP) between super-hybrid rice Wufengyou T025 (WFYT025) and its parents were identified in the young panicles. Out of the 5910 DGHP, 63.1% had a genetic action mode of over-dominance, 17.3% had a complete-dominance action, 15.6% had a partial-dominance action and 4.0% had an additive action. DGHP were significantly enriched in carotenoid biosynthesis, diterpenoid biosynthesis and plant hormone signal transduction pathways, with the key genes involved in the three pathways being up-regulated in the hybrid. By comparing the DGHP enriched in the KEGG pathway with QTLs associated with grain number, several DGHP were located on the same chromosomal segment with some of these grain number QTLs. CONCLUSION: Through young panicle development transcriptome analysis, we conclude that the over-dominant effect is probably the major contributor to the grain number heterosis of WFYT025. The DGHP sharing the same location with grain number QTLs could be considered a candidate gene and provide valuable targets for the cloning and functional analysis of these grain number QTLs.

5.
BMC Genomics ; 19(1): 460, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29902991

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) have been found to play a vital role in several gene regulatory networks involved in the various biological processes in plants related to stress response. However, systematic analyses of lncRNAs expressed in rice Cadmium (Cd) stress are seldom studied. Thus, we presented the characterization and expression of lncRNAs in rice root development at an early stage in response to Cd stress. RESULTS: The lncRNA deep sequencing revealed differentially expressed lncRNAs among Cd stress and normal condition. In the Cd stress group, 69 lncRNAs were up-regulated and 75 lncRNAs were down-regulated. Furthermore, 386 matched lncRNA-mRNA pairs were detected for 120 differentially expressed lncRNAs and 362 differentially expressed genes in cis, and target gene-related pathway analyses exhibited significant variations in cysteine and methionine metabolism pathway-related genes. For the genes in trans, overall, 28,276 interaction relationships for 144 lncRNAs and differentially expressed protein-coding genes were detected. The pathway analyses found that secondary metabolites, such as phenylpropanoids and phenylalanine, and photosynthesis pathway-related genes were significantly altered by Cd stress. All of these results indicate that lncRNAs may regulate genes of cysteine-rich peptide metabolism in cis, as well as secondary metabolites and photosynthesis in trans, to activate various physiological and biochemical reactions to respond to excessive Cd. CONCLUSION: The present study could provide a valuable resource for lncRNA studies in response to Cd treatment in rice. It also expands our knowledge about lncRNA biological function and contributes to the annotation of the rice genome.


Asunto(s)
Cadmio/toxicidad , Oryza/genética , ARN Largo no Codificante/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico/genética
6.
Front Plant Sci ; 8: 1223, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28747923

RESUMEN

Mapping major quantitative trait loci (QTL) responsible for rice seed germinability under low temperature (GULT) can provide valuable genetic source for improving cold tolerance in rice breeding. In this study, 124 rice backcross recombinant inbred lines (BRILs) derived from a cross indica cv. Changhui 891 and japonica cv. 02428 were genotyped through re-sequencing technology. A bin map was generated which includes 3057 bins covering distance of 1266.5 cM with an average of 0.41 cM between markers. On the basis of newly constructed high-density genetic map, six QTL were detected ranging from 40 to 140 kb on Nipponbare genome. Among these, two QTL qCGR8 and qGRR11 alleles shared by 02428 could increase GULT and seed germination recovery rate after cold stress, respectively. However, qNGR1 and qNGR4 may be two major QTL affecting indica Changhui 891germination under normal condition. QTL qGRR1 and qGRR8 affected the seed germination recovery rate after cold stress and the alleles with increasing effects were shared by the Changhui 891 could improve seed germination rate after cold stress dramatically. These QTL could be a highly valuable genetic factors for cold tolerance improvement in rice lines. Moreover, the BRILs developed in this study will serve as an appropriate choice for mapping and studying genetic basis of rice complex traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...