Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Colloid Interface Sci ; 321: 103011, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37826977

RESUMEN

Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.


Asunto(s)
Sustitutos de Grasa , Lípidos , Lípidos/química , Coloides , Lipasa/química , Emulsiones/química , Digestión
2.
Int J Pharm ; 642: 123186, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37385356

RESUMEN

Propolis-loaded electrospun nanofibers (PENs) have been regarded as promising candidates for biomedical purposes such as wound healing/dressing owing to their outstanding pharmacological and biological properties. This paper focuses on the development of electrospun nanofibers with optimum levels of propolis (PRP) and two polymer types (polycaprolactone (PCL) and polyvinyl alcohol (PVA)). Hence, response surface methodology (RSM) was employed to investigate the variation of the scaffold characteristics including porosity, average diameter, wettability, release, and tensile strength. For each response, a second-order polynomial model with a high coefficient of determination (R2) values ranging from 0.95 to 0.989 was developed using multiple linear regression analysis. The overall optimum region with the best characteristics was found to be at PCL/6 % PRP and PVA/5 % PRP. After selecting the optimal samples, the cytotoxicity assay showed no toxicity for the optimal concentrations of PRP. Furthermore, Fourier transform infrared (FTIR) spectra revealed that no new chemical functional groups were introduced in the PENs. Uniform fibers were found in the optimum samples without the appearance of a bead-like structure in the fibers. In conclusion, nanofibers containing the optimal concentration of PRP with suitable properties can be used in biomedical and tissue engineering.


Asunto(s)
Nanofibras , Própolis , Alcohol Polivinílico/química , Nanofibras/química , Andamios del Tejido/química , Poliésteres/química
3.
Int J Biol Macromol ; 245: 125424, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343613

RESUMEN

Today, society has been more aware of healthy food products and related items containing bioactive compounds, which potentially contribute to human health. Unfortunately, the long-term stability and bioactivity of biologically active compounds against environmental factors compromise their target and effective action. In this way, lab-designed vehicles, such as nanoparticles and nanofibers, provide enough properties for their preservation and suitable delivery. Here, the electrospinning technique acts as an effective pathway for fabricating and designing nanofibers for the entrapments of biomolecules, in which several biopolymers such as proteins, polysaccharides (e.g., maltodextrin, agarose, chitosan), silk, among others, can be used as a wall material. It is likely that chitosan is one of the most employed biomaterials in this field. Therefore, in this review, we reveal the latest advances (over the last 2-3 years) in designing chitosan-based electrospun nanofibers and nanocarriers for encapsulation of bioactive compounds, along with the key applications in smart food packaging as well. Key findings and relevant breakthroughs are a priority in this review to provide a cutting-edge analysis of the literature. Finally, particular attention has been paid to the most promising developments.

4.
Adv Colloid Interface Sci ; 318: 102933, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301064

RESUMEN

Curcumin (Cur), the major bioactive component of turmeric (Curcuma longa) possesses many health benefits. However, low solubility, stability and bioavailability restricts its applications in food. Recently, nanocarriers such as complex coacervates, nanocapsules, liposomes, nanoparticles, nanomicelles, have been used as novel strategies to solve these problems. In this review, we have focused on the delivery systems responsive to the environmental stimuli such as pH-responsive, enzyme-responsive, targeted-to-specific cells or tissues, mucus-penetrating and mucoadhesive carriers. Besides, the metabolites and their biodistribution of Cur and Cur delivery systems are discussed. Most importantly, the interaction between Cur and their carriers with gut microbiota and their effects of modulating the gut health synergistically were discussed comprehensively. In the end, the biocompatibility of Cur delivery systems and the feasibility of their application in food industry is discussed. This review provided a comprehensive review of Cur nanodelivery systems, the health impacts of Cur nanocarriers and an insight into the application of Cur nanocarriers in food industry.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/farmacología , Disponibilidad Biológica , Sistema de Administración de Fármacos con Nanopartículas , Distribución Tisular , Liposomas , Portadores de Fármacos , Sistemas de Liberación de Medicamentos
5.
Int J Biol Macromol ; 245: 125554, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356696

RESUMEN

Lung cancer is the second most prevalent and first killer cancer worldwide, and conventional approaches do not have enough ability to suppress it. Therefore, a novel targeted chitosan (CS)-poly lactic-co-glycolic acid (PLGA)-folic acid (FA) nanocarrier was developed for delivery of sorafenib (Sor) to lung cancer cells. The nanocarrier (CPSF) had a size of 30-40 nm with globular shapes. Surface charge and drug content of CPSF were ascertained at about 1.1 mV and 15 %, respectively. Controlled (4 % within 2 h) and pH-sensitive (18 % within 2 h at pH = 5.0) Sor release were observed for the nanocarrier. The MTT assay demonstrated a cell viability of 13 % after 24 h treatment with 400 nM CPSF in A549 cancer cells while it was 78 % in MSC normal cells. The qRT-PCR revealed >8 folds and 11 folds increase for Caspase9 and P53 genes after 5 h treatment with 100 nM (IC50) CPSF; but a reduction of 5 folds was observed for the Bcl2 gene. Besides, 57 % and 20 % apoptosis were attained in cell cycle arrest and apoptosis assays for CPSF, respectively. CPF indicated about 88 % internalization in cancer cells. These data prove that CPSF is a promising nanodelivery system for lung cancer suppression.


Asunto(s)
Quitosano , Neoplasias Pulmonares , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Portadores de Fármacos/química , Quitosano/química , Glicoles , Ácido Fólico/química , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química
6.
Carbohydr Polym ; 313: 120512, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182929

RESUMEN

Diabetic foot ulcer (DFU) healing has long been a major medical challenge. The type of dressing is an essential factor in wound healing, prevention of local infection, and scar formation. Today, smart wound dressings or wound healing patches can precisely control drug delivery to the target tissue and prevent this significant complication. Nanofiber (NF) wound dressings are effective in reducing wound scarring and helping to speed up the healing process for DFU. The electrospun NFs have a suitable surface topography, density, and three-dimensional structure, which can be considered an efficient method to produce a substrate for tissue engineering and wound healing. Chitosan (CS) is one of the most well-known biopolymers in wound healing tissue engineering and drug delivery systems. The unique properties of CS make it suitable for biomedical applications. Based on new studies in the field of hemostatic and antimicrobial effects of CS in controlling bleeding and wound healing and application of NF wound dressings, the purpose of this study is a review relevant works on CS-based NFs to improve the DFU.


Asunto(s)
Quitosano , Diabetes Mellitus , Pie Diabético , Nanofibras , Humanos , Pie Diabético/tratamiento farmacológico , Quitosano/uso terapéutico , Quitosano/farmacología , Nanofibras/uso terapéutico , Nanofibras/química , Vendajes , Cicatrización de Heridas , Cicatriz
7.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37111244

RESUMEN

Cannabidiol (CBD), one of the most promising constituents isolated from Cannabis sativa, exhibits diverse pharmacological actions. However, the applications of CBD are restricted mainly due to its poor oral bioavailability. Therefore, researchers are focusing on the development of novel strategies for the effective delivery of CBD with improved oral bioavailability. In this context, researchers have designed nanocarriers to overcome limitations associated with CBD. The CBD-loaded nanocarriers assist in improving the therapeutic efficacy, targetability, and controlled biodistribution of CBD with negligible toxicity for treating various disease conditions. In this review, we have summarized and discussed various molecular targets, targeting mechanisms and types of nanocarrier-based delivery systems associated with CBD for the effective management of various disease conditions. This strategic information will help researchers in the establishment of novel nanotechnology interventions for targeting CBD.

8.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37051933

RESUMEN

Saffron "Crocus sativus" is a plant of the Iridaceae family. Its therapeutic virtues have been known since antiquity; it is used in traditional medicine and culinary preparations. It is also known for its use in cosmetics because of its beneficial pharmacological activities for human skin. In particular, saffron tepals are the main by-product of saffron processing; they contain several bioactive compounds such as mineral agents, anthocyanins, monoterpenoids, carotenoids, flavonoids, and flavonols (kaempferol). This review aims to describe the different properties of saffron flower tepals, including their botanical characteristics, phytochemical composition, biological activities, and cosmetology and perfumery uses.

9.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855310

RESUMEN

Plant protein components contribute positively to human well-being as they modulate the immune status of a consumer, especially when the enzymatic method is employed in order to release their bioactive peptides. These peptides are derived from plant-based foods such as soy, wheat, barley, rye, oats, rice, corn, sorghum, and millet, the famous staple foods around the world. Since these peptides are crucial to functional food among other key industries, the present study endeavored to scout for relevant information within the past three decades, using the Web of Science, Scopus, and Google search engines. In this review, first, the core of immunomodulation and types of immunomodulatory agents will be discussed, followed by the production of plant-based immunomodulatory peptides and their immunomodulatory mechanisms in cells, animals, and humans are also studied. Finally, applications and challenges associated with plant-based immunomodulatory peptides are put forward.

10.
Crit Rev Food Sci Nutr ; : 1-32, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36975759

RESUMEN

Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. ß-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.

11.
Foods ; 12(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36832906

RESUMEN

Orange peel oil (OPO) is one of the most common flavorings used in the food industry, but it is volatile under environmental conditions (the presence of light, oxygen, humidity, and high temperatures). Encapsulation by biopolymer nanocomposites is a suitable and novel strategy to improve the bioavailability and stability of OPO and its controlled release. In this study, we investigated the release profile of OPO from freeze-dried optimized nanocomposite powders as a function of pH (3, 7, 11) and temperature (30, 60, and 90 °C), and within a simulated salivary system. Finally, its release kinetics modelling was performed using experimental models. The encapsulation efficiency of OPO within the powders, along with the morphology and size of the particles, were also evaluated by an atomic force microscopy (AFM) analysis. The results showed that the encapsulation efficiency was in the range of 70-88%, and the nanoscale size of the particles was confirmed by AFM. The release profile showed that the lowest and the highest release rates were observed at the temperatures of 30 and 90 °C and in the pH values of 3 and 11, respectively, for all three samples. The Higuchi model provided the best model fitting of the experimental data for the OPO release of all the samples. In general, the OPO encapsulates prepared in this study showed promising characteristics for food flavoring applications. These results suggest that the encapsulation of OPO may be useful for controlling its flavor release under different conditions and during cooking.

12.
ACS Omega ; 8(4): 3667-3683, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36743024

RESUMEN

The brain is vulnerable to different types of stresses, particularly oxidative stress as a result of oxygen requirements/utilization in the body. Large amounts of unsaturated fatty acids present in the brain increase this vulnerability. Neurodegenerative diseases (NDDs) are brain disorders that are characterized by the gradual loss of specific neurons and are attributed to broad evidence of cell-level oxidative stress. The accurate characterization of neurological disorders relies on several parameters along with genetics and environmental risk factors, making therapies less efficient to fight NDDs. On the way to tackle oxidative damage and discover efficient and safe therapies, bioactives are at the edge of NDD science. Naturally occurring bioactive compounds such as polyphenols, carotenoids, essential fatty acids, phytosterols, essential oils, etc. are particularly of interest owing to their potent antioxidant and anti-inflammatory activities, and they offer lots of brain-health-promoting features. This Review focuses on probing the neuroefficacy and bioefficacy of bioactives and their role in supporting relatively low antioxidative and low regenerative capacities of the brain, neurogenesis, neuroprotection, and ameliorating/treating NDDs.

13.
J Control Release ; 355: 327-342, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731801

RESUMEN

The high prevalence of chronic illnesses, including cancer, diabetes, obesity, and cardiovascular diseases has become a growing concern for modern society. Recently, various bioactive compounds (bioactives) are shown to have a diversity of health-beneficial impacts on a wide range of disorders. But the application of these bioactives in food and pharmaceutical formulations is limited due to their poor water solubility and low bioaccessibility/bioavailability. Plant proteins are green alternatives for designing biopolymeric nanoparticles as appropriate nanocarriers thanks to their amphiphilic nature compatible with many bioactives and unique functional properties. Recently, emerging plant proteins (EPPs) are employed as nanocarriers for protection and targeted delivery of bioactives and also improving their stability and shelf-life. EPPs could enhance the solubility, stability, and bioavailability of bioactives by different types of delivery systems. In addition, the use of EPPs in combination with other biopolymers like polysaccharides was found to make a favorable wall material for food bioactives. This review article covers the various sources and importance of EPPs along with different encapsulation techniques of bioactives. Characterization of EPPs for encapsulation is also investigated. Furthermore, the focus is on the application of EPPs as nanocarriers for food bioactives.


Asunto(s)
Nanopartículas , Proteínas de Plantas , Alimentos , Biopolímeros , Disponibilidad Biológica
14.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36728840

RESUMEN

Todays, nanoliposomes (NLPs) are considered as one of the most efficient nanocarriers to deal with bacteria, practically in food products. These nanodelivery systems are able to be loaded with different bioactive compounds. The main aim of this review is investigating recent approaches (mostly from the years of 2018 to 2022) regarding development of nanoliposomal natural antibacterial compounds. In this regard, NLPs alone, combined with films, coatings, or fibers, and in coated forms are reviewed as advanced delivery systems of antibacterial substances. Moreover, a robust and comprehensive coverage of the morphological and physical properties of formulated NLPs as well as their interactions with antibacterial substances are discussed. The importance of NLPs to encapsulate antibacterial ingredients, advantages and drawbacks, antibacterial pathways of formulated NLPs, and comparison of them with pure antibacterial bioactive compounds are also explained.

15.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36728841

RESUMEN

There is an urgent need for the development of sustainable and eco-friendly pesticide formulations since common synthetic pesticides result in many adverse effects on human health and the environment. Essential oils (EOs) are a mixture of volatile oils produced as a secondary metabolite in medicinal plants, and show activities against pests, insects, and pathogenic fungi. Their chemical composition is affected by several factors such as plant species or cultivar, geographical origin, environmental conditions, agricultural practices, and extraction method. The growing number of studies related to the herbicidal, insecticidal, acaricidal, nematicidal, and antimicrobial effects of EOs demonstrate their effectiveness and suitability as sustainable and environment-friendly biopesticides. EOs can biodegrade into nontoxic compounds; at the same time, their harmful and detrimental effects on non-target organisms are low. However, few biopesticide formulations based on EOs have been turned into commercial practice upto day. Several challenges including the reduced stability and efficiency of EOs under environmental conditions need to be addressed before EOs are widely applied as commercial biopesticides. This work is an overview of the current research on the application of EOs as biopesticides. Findings of recent studies focusing on the challenges related to the use of EOs as biopesticides are also discussed.

16.
Food Chem ; 412: 135479, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36709686

RESUMEN

Bixin is the cis-carotenoid from the seed of achiote tree or annatto. It is an approved liposoluble apocarotenoid by FDA as colorant and additive in the food industry. Nonetheless, bixin is unstable in the presence of oxygen, light, high pHs (alkali) and heat; thereby reducing its bioavailability/bioactivity, and also, with a low solubility in water. Some biopolymeric (e.g., nanofibers, nanogels, and nanotubes) and lipid-based nanocarriers (nanoliposomes, niosomes, hexosomes, nanoemulsions, solid-lipid nanoparticles, and nanostructured lipid carriers) have been introduced for bixin. Thus, this review focuses on the updated information regarding bixin-loaded nanodelivery platforms. Moreover, it provides a comprehensive review of bioavailability, physicochemical properties, and applications of nanoencapsulated-bixin as an additive, its release rate and safety issues. These findings will bring potential strategies for the usage of nanocarriers in managing bixin defaults to improve its broad application in various industries.


Asunto(s)
Sistema de Administración de Fármacos con Nanopartículas , Nanoestructuras , Carotenoides/química , Lípidos
17.
Adv Colloid Interface Sci ; 311: 102833, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610103

RESUMEN

Pomegranate fruit is getting more attention due to its positive health effects, and pomegranate peel (PP) is its main byproduct. PP has the potential to be converted from environmentally polluting waste to wealth due to its rich phenolic compounds such as ellagitannins, proanthocyanidins, and flavonoids with antioxidant, antimicrobial, and health effects. These phenolics are susceptible to environmental conditions such as heat, light, and pH as well as in vivo conditions of gastrointestinal secretions. Some phenolics of PP, e.g., ellagitannins could interfere with food ingredients and thus reduce their beneficial effects. Also, ellagitannins could form complexes with salivary glycoproteins, then a feeling of astringency taste. In this article, nano-delivery systems such as nanoparticles, nanoemulsions, and vesicular nanocarriers, designed and fabricated for PP bioactive compounds in recent years have been reviewed. Among them, lipid-based nano carriers i.e., solid lipid nanoparticles, nanostructured lipid carriers, and vesicular nanocarriers have low toxicity, large-scale production feasibility, easy synthesis, and high biocompatibility. So, it seems that the extraction and purification of bioactives from pomegranate wastes and nanoencapsulating them with cost effective and generally recognized as safe (GRAS) materials can be a bright prospect in enhancing the quality, safety, shelf life and health benefits of pomegranate products.


Asunto(s)
Frutas , Granada (Fruta) , Frutas/química , Granada (Fruta)/química , Taninos Hidrolizables/análisis , Sistema de Administración de Fármacos con Nanopartículas , Extractos Vegetales/química , Fenoles , Antioxidantes/farmacología , Antioxidantes/química , Lípidos/análisis
18.
Food Chem ; 411: 135478, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36696721

RESUMEN

Potential effects of metabiotics (probiotics effector molecules or signaling factors), pharmabiotics (pro-functional metabolites produced by gut microbiota (GMB)) and postbiotics (multifunctional metabolites and structural compounds of food-grade microorganisms) on GMB have been rarely reviewed. These multifunctional components have several promising capabilities for prevention, alleviation and treatment of some diseases or disorders. Correlations between these essential biotics and GMB are also very interesting and important in human health and nutrition. Furthermore, these natural bioactives are involved in modulation of the immune function, control of metabolic dysbiosis and regulation of the signaling pathways. This review discusses the potential of meta/pharma/post-biotics as new classes of pharmaceutical agents and their effective mechanisms associated with GMB-host cell to cell communications with therapeutic benefits which are important in balance and the integrity of the host microbiome. In addition, cutting-edge findings about bioinformatics /metabolomics analyses related to GMB and these essential biotics are reviewed.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , Metaboloma , Metabolómica , Estado Nutricional
19.
Crit Rev Food Sci Nutr ; 63(32): 11351-11369, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35758266

RESUMEN

The rapid progress in modern technologies and paying more attention to food safety has prompted new green technologies superior than chemical methods in the food industry. In this regard, enzymes can decrease the usage of chemical reactions but they are sensitive to environmental effects (pH and temperature). In addition, enzymes are scarcely possible to be reused. Consequently, their application as natural catalysts is restricted. Using nanotechnology and the possibility of enzyme immobilization on nanomaterials has led to nanobiocatalysts, resulting from the integration of nanotechnology and biotechnology. Nanocarriers have individual features like nanoscale size, excellent surface/volume ratio, and diversity in construction to improve the activity, efficiency, stability, and storage stability of enzymes. Nanobiocatolysts have a wide range of applications in purification, extraction, clarification, production, and packaging of various products in the food industry. Furthermore, the application of nanobiocatalysts to identify specific components of food contaminants such as microorganisms or their metabolites, heavy metals, antibiotics, and residual pesticides has been successful due to the high accuracy of detection. This review investigates the integration of nanotechnology and food enzymes, the nanomaterials used to create nanobiocatalysts and their application, along with the possible risks and legal aspects of nanomaterials in food bioprocesses.


Asunto(s)
Enzimas Inmovilizadas , Nanoestructuras , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Nanoestructuras/química , Nanotecnología/métodos , Biotecnología/métodos , Industria de Alimentos
20.
Adv Colloid Interface Sci ; 311: 102827, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36584601

RESUMEN

Electrospinning (ES) is one of the most investigated processes for the convenient, adaptive, and scalable manufacturing of nano/micro/macro-fibers. With this technique, virgin and composite fibers may be made in different designs using a wide range of polymers (both natural and synthetic). Electrospun protein fibers (EPF) shave desirable capabilities such as biocompatibility, low toxicity, degradability, and solvolysis. However, issues with the proteins' processibility have limited their widespread utilization. This paper gives an overview of the features of protein-based biomaterials, which are already being employed and has the potential to be exploited for ES. State-of-the-art examples showcasing the usefulness of EPFs in the food and biomedical industries, including tissue engineering, wound dressings, and drug delivery, provided in the applications. The EPFs' future perspective and the challenge they pose are presented at the end. It is believed that protein and biopolymeric nanofibers will soon be manufactured on an industrial scale owing to the limitations of employing synthetic materials, as well as enormous potential of nanofibers in other fields, such as active food packaging, regenerative medicine, drug delivery, cosmetic, and filtration.


Asunto(s)
Nanofibras , Materiales Biocompatibles , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...