Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37514574

RESUMEN

In recent years, BCT has garnered significant attention from researchers worldwide. The technology in question is a distributed database system characterised by its decentralised nature and lack of reliability. BCT has been widely adopted by numerous governments and scholars across various sectors for a number of years. Blockchain technology also involves highly innovative and advanced concepts. Given the increasing interest among scholars in the academic community regarding the agrifood supply chain, the objective of this study was to investigate BCT and its potential for application in the fields of food and agriculture. This research paper presents a bibliometric analysis of articles on the utilisation of BCT in the fields of food and agriculture. This study discusses scholarly articles that have been published in esteemed academic journals and conferences. Through our bibliometric analysis, we aimed to discern the recurring trends and themes within the research on BCT in relation to agrifood systems. Furthermore, this study examines a diverse array of research domains, prominent scholarly publications, leading publishing platforms, prominent funding institutions, and the prospective trajectory of future research. This study also presents the prominent patterns and themes within this field through an analysis of the most influential scholarly articles, authors, countries, and keywords found in the existing literature. Hence, this research employed various analytical techniques, including analyzing the co-occurrence of author keywords, bibliographic coupling analysis, network view map analysis, and co-citation analysis. This study holds promise as a valuable learning resource for aspiring researchers seeking to acquire compelling and pertinent information about research outcomes from studies on the utilisation of BCT in the field of smart agriculture.

2.
Comput Math Methods Med ; 2022: 5154896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872945

RESUMEN

Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system (CNS). Early diagnosis of MS is highly desirable as treatments are more effective in preventing MS-related disability when given in the early stages of the disease. The main aim of this research is to predict the occurrence of a second MS-related clinical event, which indicates the conversion of clinically isolated syndrome (CIS) to clinically definite MS (CDMS). In this study, we apply a branch of artificial intelligence known as deep learning and develop a fully automated algorithm primed with convolutional neural network (CNN) that has the ability to learn from MRI scan features. The basic architecture of our algorithm is that of the VGG16 CNN model, but amended such that it can handle MRI DICOM images. A dataset comprised of scans acquired using two different scanners was used for the purposes of verification of the algorithm. A group of 49 patients had volumetric MRI scans taken at onset of the disease and then again one year later using one of the two scanners. In total, this yielded 7360 images which were then used for training, validation, and testing of the algorithm. Initially, these raw images were taken through 4 steps of preprocessing. In order to boost the efficiency of the process, we pretrained our algorithm using the publicly available ADNI dataset used to classify Alzheimer's disease. Finally, we used our preprocessed dataset to train and test the algorithm. Clinical evaluation conducted a year after the first time point revealed that 26 of the 49 patients had converted to CDMS, while the remaining 23 had not. Results of testing showed that our algorithm was able to predict the clinical results with an accuracy of 88.8% and with an area under the curve (AUC) of 91%. A highly accurate algorithm was developed using CNN approach to reliably predict conversion of patients with CIS to CDMS using MRI data from two different scanners.


Asunto(s)
Esclerosis Múltiple , Algoritmos , Inteligencia Artificial , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Redes Neurales de la Computación
3.
Comput Intell Neurosci ; 2022: 3045107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463293

RESUMEN

The health system in today's real world is significant but difficult and overcrowded. These hurdles can be diminished using improved health record management and blockchain technology. These technologies can handle medical data to provide security by monitoring and maintaining patient records. The processing of medical data and patient records is essential to analyze the earlier prescribed medicines and to understand the severity of diseases. Blockchain technology can improve the security, performance, and transparency of sharing the medical records of the current healthcare system. This paper proposed a novel framework for personal health record (PHR) management using IBM cloud data lake and blockchain platform for an effective healthcare management process. The problem in the blockchain-based healthcare management system can be minimized with the utilization of the proposed technique. Significantly, the traditional blockchain system usually decreases the latency. Therefore, the proposed technique focuses on improving latency and throughput. The result of the proposed system is calculated based on various matrices, such as F1 Score, Recall, and Confusion matrices. Therefore, the proposed work scored high accuracy and provided better results than existing techniques.


Asunto(s)
Cadena de Bloques , Nube Computacional , Registros de Salud Personal , Seguridad Computacional , Humanos
4.
Multimed Syst ; 28(3): 881-914, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35079207

RESUMEN

Medical images are a rich source of invaluable necessary information used by clinicians. Recent technologies have introduced many advancements for exploiting the most of this information and use it to generate better analysis. Deep learning (DL) techniques have been empowered in medical images analysis using computer-assisted imaging contexts and presenting a lot of solutions and improvements while analyzing these images by radiologists and other specialists. In this paper, we present a survey of DL techniques used for variety of tasks along with the different medical image's modalities to provide critical review of the recent developments in this direction. We have organized our paper to provide significant contribution of deep leaning traits and learn its concepts, which is in turn helpful for non-expert in medical society. Then, we present several applications of deep learning (e.g., segmentation, classification, detection, etc.) which are commonly used for clinical purposes for different anatomical site, and we also present the main key terms for DL attributes like basic architecture, data augmentation, transfer learning, and feature selection methods. Medical images as inputs to deep learning architectures will be the mainstream in the coming years, and novel DL techniques are predicted to be the core of medical images analysis. We conclude our paper by addressing some research challenges and the suggested solutions for them found in literature, and also future promises and directions for further developments.

5.
Appl Soft Comput ; 101: 107039, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33519324

RESUMEN

Virus diseases are a continued threat to human health in both community and healthcare settings. The current virus disease COVID-19 outbreak raises an unparalleled public health issue for the world at large. Wuhan is the city in China from where this virus came first and, after some time the whole world was affected by this severe disease. It is a challenge for every country's people and higher authorities to fight with this battle due to the insufficient number of resources. On-going assessment of the epidemiological features and future impacts of the COVID-19 disease is required to stay up-to-date of any changes to its spread dynamics and foresee needed resources and consequences in different aspects as social or economic ones. This paper proposes a prediction model of confirmed and death cases of COVID-19. The model is based on a deep learning algorithm with two long short-term memory (LSTM) layers. We consider the available infection cases of COVID-19 in India from January 22, 2020, till October 9, 2020, and parameterize the model. The proposed model is an inference to obtain predicted coronavirus cases and deaths for the next 30 days, taking the data of the previous 260 days of duration of the pandemic. The proposed deep learning model has been compared with other popular prediction methods (Support Vector Machine, Decision Tree and Random Forest) showing a lower normalized RMSE. This work also compares COVID-19 with other previous diseases (SARS, MERS, h1n1, Ebola, and 2019-nCoV). Based on the mortality rate and virus spread, this study concludes that the novel coronavirus (COVID-19) is more dangerous than other diseases.

6.
Comput Intell Neurosci ; 2019: 9252837, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236109

RESUMEN

Customer retention is invariably the top priority of all consumer businesses, and certainly it is one of the most critical challenges as well. Identifying and gaining insights into the most probable cause of churn can save from five to ten times in terms of cost for the company compared with finding new customers. Therefore, this study introduces a full-fledged geodemographic segmentation model, assessing it, testing it, and deriving insights from it. A bank dataset consisting 11,000 instances, which consists of 10,000 instances for training and 10,000 instances for testing, with 14 attributes, has been used, and the likelihood of a person staying with the bank or leaving the bank is computed with the help of logistic regression. Base on the proposed model, insights are drawn and recommendations are provided. Stepwise logistic regression methods, namely, backward elimination method, forward selection method, and bidirectional model are constructed and contrasted to choose the best among them. Future forecasting of the models has been done by using cumulative accuracy profile (CAP) curve analysis.


Asunto(s)
Comercio , Comportamiento del Consumidor , Predicción , Aprendizaje Automático , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA