Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0289609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535697

RESUMEN

BACKGROUND: Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS: P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS: Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION: This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.


Asunto(s)
Epítopos de Linfocito B , Pseudomonas aeruginosa , Humanos , Simulación del Acoplamiento Molecular , Vacunología , Receptor Toll-Like 4/química , Simulación de Dinámica Molecular , Epítopos de Linfocito T , Biología Computacional , Vacunas de Subunidad
2.
Microbiol Res ; 250: 126790, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34098495

RESUMEN

Iron is an essential element for all microorganisms. Siderophores are low-weight, high-affinity iron chelating molecules produced in response to iron deficiency by Gram-positive and Gram-negative bacteria which also known as essential virulence factors of bacteria. Several studies have indicated that defective production and/or function of these molecules as well as iron acquisition systems in pathogens are associated with a reduction in pathogenicity of bacteria. Because of their potential role in various biological pathways, siderophores have been received special attention as secondary metabolites. Siderophores can detect iron levels in a variety of environments with a biosensor function. In medicine, siderophores are used to deliver antibiotics (Trojan horse strategy) to resistant bacteria and to treat diseases such as cancer and malaria. In this review, we discuss the iron acquisition pathways in Gram-positive and -negative bacteria, importance of siderophore production in pathogenesis of bacteria, classification of siderophores, and main applications of siderophores in medicine and industry.


Asunto(s)
Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/patogenicidad , Sideróforos/genética , Antibacterianos/metabolismo , Transporte Biológico , Técnicas Biosensibles , Humanos , Microbiología Industrial/métodos , Hierro/metabolismo , Quelantes del Hierro/metabolismo , Sideróforos/metabolismo
3.
Iran J Microbiol ; 8(6): 359-365, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28491245

RESUMEN

BACKGROUND AND OBJECTIVES: Bacteria need iron for growth and most of them can actively acquire Fe ions using especial iron-chelating proteins which named siderophores. We aimed to determine the frequencies of iucA, iroN and irp2 genes in the uropathogenic Escherichia coli (UPEC) isolates. We also analyzed the effects of siderophore genes beside iron supplements on growth rate of the isolates. MATERIALS AND METHODS: Totally, 170 E. coli strains were isolated from urinary tract infections and the presence of 3 siderophore genes were analyzed using PCR among them. Three final concentrations of 0.1, 0.5 and 1 mMFe(II) and Fe(III) ions were made in M9 broth medium. Inoculated cultures were incubated at 37°C for 33 hours and bacterial density in the suspension was measured with 1 hour intervals using spectrophotometer. RESULTS: The frequency of iucA, iroN and irp2 genes among 170 UPEC isolates were 29 (17.1%), 52 (30.6%) and 116 (68.2%), respectively. In addition, Our findings showed that Fe(II) supplements had significantly higher promoting effects on UPEC growth rate almost in all of the three applied concentrations (0.1, 0.5 and 1 mM) compared to the control group (P<0.0001). Differences between Fe(III) supplemented groups and the controls were statistically significant when 1 mM concentration was added into the medium (p<0.05). CONCLUSION: irp2 gene probably plays a major role in the pathogenesis of UPEC strains. Promoting or inhibitory effects of iron on bacterial growth mainly depend on the iron concentration in the culture medium however different siderophores have different potentials for capturing and assimilation of Fe ions by the bacteria, especially inside the host cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...