Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chim Acta ; 557: 117878, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493942

RESUMEN

Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.


Asunto(s)
Técnicas Biosensibles , Glioblastoma , Técnicas Biosensibles/métodos , Detección Precoz del Cáncer , Técnicas Electroquímicas , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética
2.
J Appl Genet ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38459407

RESUMEN

Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.

3.
Int J Biol Macromol ; 263(Pt 1): 130223, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38365146

RESUMEN

In the present study, we investigated the effects of N-homocysteine thiolactone (tHcy) modification on expressed and purified tau protein and the synthesized VQIVYK target peptide. The modified constructs were subjected to comprehensive validation using various methodologies, including mass spectrometry. Subsequently, in vivo, in vitro, and in silico characterizations were performed under both reducing and non-reducing conditions, as well as in the presence and absence of heparin as a cofactor. Our results unequivocally confirmed that under reducing conditions and in the presence of heparin, the modified constructs exhibited a greater propensity for aggregation. This enhanced aggregative behavior can be attributed to the disruption of lysine positive charges and the subsequent influence of hydrophobic and p-stacking intermolecular forces. Notably, the modified oligomeric species induced apoptosis in the SH-SY5Y cell line, and this effect was further exacerbated with longer incubation times and higher concentrations of the modifier. These observations suggest a potential mechanism involving reactive oxygen species (ROS). To gain a deeper understanding of the molecular mechanisms underlying the neurotoxic effects, further investigations are warranted. Elucidating these mechanisms will contribute to the development of more effective strategies to counteract aggregation and mitigate neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Proteínas tau/química , Lisina/metabolismo , Neuroblastoma/metabolismo , Encéfalo/metabolismo , Heparina/metabolismo , Enfermedad de Alzheimer/metabolismo
4.
Clin Chim Acta ; 556: 117829, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355000

RESUMEN

Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma.


Asunto(s)
Técnicas Biosensibles , Glioblastoma , MicroARNs , Nanopartículas , Nanoestructuras , Humanos , MicroARNs/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/terapia , Nanoestructuras/química , Biomarcadores de Tumor/genética , Técnicas Electroquímicas
5.
DNA Cell Biol ; 43(3): 108-124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394131

RESUMEN

Around 50% of all occurrences of infertility are attributable to the male factor, which is a significant global public health concern. There are numerous circumstances that might interfere with spermatogenesis and cause the body to produce abnormal sperm. While evaluating sperm, the count, the speed at which they migrate, and their appearance are the three primary characteristics that are analyzed. MicroRNAs, also known as miRNAs, are present in all physiological fluids and tissues. They participate in both physiological and pathological processes. Researches have demonstrated that the expression of microRNA genes differs in infertile men. These genes regulate spermatogenesis at various stages and in several male reproductive cells. Hence, microRNAs have the potential to act as useful indicators in the diagnosis and treatment of male infertility and other diseases affecting male reproduction. Despite this, additional research is necessary to determine the precise miRNA regulation mechanisms.


Asunto(s)
Infertilidad Masculina , MicroARNs , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Semen/metabolismo , Infertilidad Masculina/genética , Espermatozoides/metabolismo , Espermatozoides/patología , Espermatogénesis/genética , Fertilidad/genética
6.
Clin Chim Acta ; 554: 117796, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272250

RESUMEN

Liver cancer is one of the deadliest types worldwide and early diagnosis is highly important for successful treatment. Therefore, it is necessary to develop rapid, sensitive, simple, and inexpensive analytical tools for its detection. MicroRNAs (miRNA) represent unique biomarkers whose expression in biofluids is strongly associated with cancer in general and miR-21, -31, -122, -145, -146a, -200c, -221, -222, and -223 in liver cancer, specifically. Various biosensors for miRNA detection have been developed. These include electrochemical biosensors based on amperometric, potentiometric, conductometric and impedimetric technology. Furthermore, the use of advanced nanomaterials with enhanced chemical stability, conductivity and electrocatalytic activity have greatly increased the sensitivity and specificity of these devices. The present review focuses on recent advances in electrochemical biosensors for miRNA detection in liver cancer.


Asunto(s)
Técnicas Biosensibles , Neoplasias Hepáticas , MicroARNs , Nanoestructuras , Humanos , MicroARNs/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Biomarcadores , Técnicas Electroquímicas
7.
Clin Chim Acta ; 552: 117676, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38007056

RESUMEN

Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer.


Asunto(s)
Técnicas Biosensibles , Neoplasias Pulmonares , MicroARNs , Nanoestructuras , Humanos , MicroARNs/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Nanoestructuras/química , Técnicas Biosensibles/métodos , Biomarcadores de Tumor/genética , Técnicas Electroquímicas
8.
Int J Neurosci ; : 1-10, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064237

RESUMEN

BACKGROUND: Neurodegenerative disorders such as Alzheimer's and Parkinson's disease inflict economic and health burdens on societies. Alzheimer's disease (AD), the most prevalent form of dementia, is accompanied by progressive degradation of memory, decision-making, and judgment. Parkinson's disease (PD) is characterized by resting tremor, rigidity, bradykinesia, and loss of balance. Extensive research has pinpointed inflammation as a cause of the onset and progression of both diseases. However, it has not been confirmed which one is more formidable in terms of inflammation. METHODS: To assess the extent of inflammation that is implicated in AD and PD and answer the question of which one is more inflammatory, serum levels of inflammatory biomarkers, including cytokines, chemokines, and prostaglandin E2 (PEG2), were measured in AD and PD patients as well as a healthy group. RESULTS: Our results showed a significant increase in IL-1α, IL-1ß, IL-4, IL-6, IL-10, IL-12p70, IP-10, MCP-1, PEG2, and TNF-α in AD and PD patients compared with the control. Interestingly, IFN-γ did not manifest any significant difference in AD or PD patients compared with the control. CONCLUSION: As a hallmark of our results, it could be inferred that inflammation, as the underlying etiological cause, plays a more crucial role in PD compared with AD. Based on our results, it is proposed that anti-inflammatory remedies would be putatively more effective in PD rather than AD.

9.
BMC Microbiol ; 23(1): 257, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704938

RESUMEN

BACKGROUND: Enzybiotics are promising alternatives to conventional antibiotics for drug-resistant infections. Exolysins, as a class of enzybiotics, show antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). This study evaluated a novel exolysin containing an SH3b domain for its antibacterial activity against MRSA. METHODS: This study designed a chimeric exolysin by fusing the Cell-binding domain (SH3b) from Lysostaphin with the lytic domain (LYZ2) from the gp61 enzyme. Subsequently, LYZ2-SH3b was cloned and expressed in Escherichia coli (E. coli). Finally, the antibacterial effects of LYZ2-SH3b compared with LYZ2 and vancomycin against reference and clinical isolates of MRSA were measured using the disc diffusion method, the minimal inhibitory concentration (MIC), and the minimal bactericidal concentration (MBC) assays. RESULTS: Analysis of bioinformatics showed that LYZ2-SH3b was stable, soluble, and non-allergenic. Protein purification was performed with a 0.8 mg/ml yield for LYZ2-SH3b. The plate lysis assay results indicated that, at the same concentrations, LYZ2-SH3b has a more inhibitory effect than LYZ2. The MICs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239). This suggests a higher efficiency of LYZ2-SH3b compared to LYZ2. Furthermore, the MBCs of LYZ2 were 4 µg/mL (ATCC 43,300) and 8 µg/mL (clinical isolate ST239), whereas, for LYZ2-SH3b, they were 2 µg/mL (ATCC 43,300) and 4 µg/mL (clinical isolate ST239), thus confirming the superior lytic activity of LYZ2-SH3b over LYZ2. CONCLUSIONS: The study suggests that phage endolysins, such as LYZ2-SH3b, may represent a promising new approach to treating MRSA infections, particularly in cases where antibiotic resistance is a concern. But further studies are needed.


Asunto(s)
Bacteriófagos , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Escherichia coli/genética , Antibacterianos/farmacología , Vancomicina
10.
CNS Neurosci Ther ; 29(11): 3150-3159, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37452477

RESUMEN

Epilepsy is a common chronic neurological disorder caused by aberrant neuronal electrical activity. Antiseizure medications (ASMs) are the first line of treatment for people with epilepsy (PWE). However, their effectiveness may be limited by their inability to cross the blood-brain barrier (BBB), among many other potential underpinnings for drug resistance in epilepsy. Therefore, there is a need to overcome this issue and, hopefully, improve the effectiveness of ASMs. Recently, synthetic nanoparticle-based drug delivery systems have received attention for improving the effectiveness of ASMs due to their ability to cross the BBB. Furthermore, exosomes have emerged as a promising generation of drug delivery systems because of their potential benefits over synthetic nanoparticles. In this narrative review, we focus on various synthetic nanoparticles that have been studied to deliver ASMs. Furthermore, the benefits and limitations of each nano-delivery system have been discussed. Finally, we discuss exosomes as potentially promising delivery tools for treating epilepsy.


Asunto(s)
Epilepsia , Exosomas , Humanos , Epilepsia/tratamiento farmacológico , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Anticonvulsivantes/uso terapéutico
11.
Clin Chim Acta ; 548: 117472, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419303

RESUMEN

Pancreatic cancer (PC) is one of the deadliest cancers worldwide. MicroRNAs (miRs) are sensitive molecular diagnostic tools that can serve as highly accurate biomarkers in many disease states in general and cancer specifically. MiR-based electrochemical biosensors can be easily and inexpensively manufactured, making them suitable for clinical use and mass production for point-of-care use. This paper reviews nanomaterial-enhanced miR-based electrochemical biosensors in pancreatic cancer detection, analyzing both labeled and label-free approaches, as well as enzyme-based and enzyme-free methods.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Nanoestructuras , Neoplasias Pancreáticas , Humanos , MicroARNs/genética , Técnicas Biosensibles/métodos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Técnicas Electroquímicas/métodos , Neoplasias Pancreáticas
12.
Inflammation ; 46(5): 1966-1980, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37310644

RESUMEN

Acetyl-11-keto-beta-boswellic acid (AKBA), a potent anti-inflammatory compound purified from Boswellia species, was investigated in a preclinical study for its potential in preventing and treating non-alcoholic fatty liver disease (NAFLD), the most common chronic inflammatory liver disorder. The study involved thirty-six male Wistar rats, equally divided into prevention and treatment groups. In the prevention group, rats were given a high fructose diet (HFrD) and treated with AKBA for 6 weeks, while in the treatment group, rats were fed HFrD for 6 weeks and then given a normal diet with AKBA for 2 weeks. At the end of the study, various parameters were analyzed including liver tissues and serum levels of insulin, leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-ß), interferon gamma (INF-ϒ), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). Additionally, the expression levels of genes related to the inflammasome complex and peroxisome proliferator-activated receptor gamma (PPAR-ϒ), as well as the levels of phosphorylated and non-phosphorylated AMP-activated protein kinase alpha-1 (AMPK-α1) protein, were measured. The results showed that AKBA improved NAFLD-related serum parameters and inflammatory markers and suppressed PPAR-ϒ and inflammasome complex-related genes involved in hepatic steatosis in both groups. Additionally, AKBA prevented the reduction of the active and inactive forms of AMPK-α1 in the prevention group, which is a cellular energy regulator that helps suppress NAFLD progression. In conclusion, AKBA has a beneficial effect on preventing and avoiding the progression of NAFLD by preserving lipid metabolism, improving hepatic steatosis, and suppressing liver inflammation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Inflamasomas/metabolismo , Fructosa/metabolismo , Fructosa/farmacología , Fructosa/uso terapéutico , Metabolismo de los Lípidos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Ratas Wistar , Hígado/metabolismo , Dieta , Inflamación/metabolismo
13.
Immun Inflamm Dis ; 11(6): e867, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37382263

RESUMEN

As reported by the World Health Organization, about 10 million individuals were infected with tuberculosis (TB) worldwide. Moreover, approximately 1.5 million people died of TB, of which 214,000 were infected with HIV simultaneously. Due to the high infection rate, the need for effective TB vaccination is highly felt. Until now, various methodologies have been proposed for the development of a protein subunit vaccine for TB. These vaccines have shown higher protection than other vaccines, particularly the Bacillus culture vaccine. The delivery system and safety regulator are common characteristics of effective adjuvants in TB vaccines and the clinical trial stage. The present study investigates the current state of TB adjuvant research focusing on the liposomal adjuvant system. Based on our findings, the liposomal system is a safe and efficient adjuvant from nanosize to microsize for vaccinations against TB, other intracellular infections, and malignancies. Clinical studies can provide valuable feedback for developing novel TB adjuvants, which ultimately enhance the impact of adjuvants on next-generation TB vaccines.


Asunto(s)
Vacunas contra la Tuberculosis , Humanos , Adyuvantes Inmunológicos , Vacunación
14.
Exp Neurol ; 366: 114434, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37201745

RESUMEN

Long non-coding RNAs (lncRNAs) cannot be coded to proteins; however, they can display important functions in several aspects of cell biology. Their abnormal expression is verified in various disorders, including neurodegenerative diseases, especially Alzheimer's disease (AD). By acting as a cell cycle suppressor or promotor, lncRNAs mediate some signaling pathways, which in turn lead to exacerbation or improvement of AD. Wnt/ß-catenin signaling pathway, as an important pathway in the pathogenesis of AD, can extremely be affected by lncRNAs. This pathway participates in various biological processes, such as embryogenesis and tissue homeostasis, and is involved in expanding the central nervous system, such as synaptogenesis, plasticity, and hippocampal neurogenesis. lncRNAs can regulate the expression of Wnt pathway target genes by interacting with various components of this pathway. This article discusses lncRNAs and their associated mechanisms in the alteration of Wnt/ß-catenin signaling, which can be regarded as a new aspect of diagnosing and treating AD.


Asunto(s)
Enfermedad de Alzheimer , ARN Largo no Codificante , Humanos , Enfermedad de Alzheimer/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Ciclo Celular , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Vía de Señalización Wnt/genética
15.
Mol Neurobiol ; 60(8): 4659-4678, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37138197

RESUMEN

Gliomas make up virtually 80% of all lethal primary brain tumors and are categorized based on their cell of origin. Glioblastoma is an astrocytic tumor that has an inferior prognosis despite the ongoing advances in treatment modalities. One of the main reasons for this shortcoming is the presence of the blood-brain barrier and blood-brain tumor barrier. Novel invasive and non-invasive drug delivery strategies for glioblastoma have been developed to overcome both the intact blood-brain barrier and leverage the disrupted nature of the blood-brain tumor barrier to target cancer cells after resection-the first treatment stage of glioblastoma. Exosomes are among non-invasive drug delivery methods and have emerged as a natural drug delivery vehicle with high biological barrier penetrability. There are various exosome isolation methods from different origins, and the intended use of the exosomes and starting materials defines the choice of isolation technique. In the present review, we have given an overview of the structure of the blood-brain barrier and its disruption in glioblastoma. This review provided a comprehensive insight into novel passive and active drug delivery techniques to overcome the blood-brain barrier, emphasizing exosomes as an excellent emerging drug, gene, and effective molecule delivery vehicle used in glioblastoma therapy.


Asunto(s)
Neoplasias Encefálicas , Exosomas , Glioblastoma , Humanos , Barrera Hematoencefálica/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Exosomas/patología , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos/métodos
16.
Clin Chim Acta ; 541: 117245, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36754191

RESUMEN

Gastrointestinal (GI) cancers are one of the most common causes of cancer-related mortality. The discovery of microRNAs (miRs) and their unique role in cancer and other diseases has prompted the development of highly sensitive molecular diagnostic tools using nanomaterials as sensitive and specific biosensors. Among these, electrochemical biosensors, which are based on a simple and inexpensive design, make them desirable in clinical applications as well as a mass-produced point-of-care device. We review miR-based electrochemical biosensors in GI cancer and examine the use of nanoparticles in the evolving development of miR-based biosensors. Among these, a number of approaches including redox labeled probes, catalysts, redox intercalating agents and free redox indicators are highlighted for use in electrochemical biosensor technology.


Asunto(s)
Técnicas Biosensibles , Neoplasias Gastrointestinales , MicroARNs , Nanoestructuras , Humanos , Nanoestructuras/química , Nanotecnología , Técnicas Electroquímicas
17.
Clin Chim Acta ; 540: 117216, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592922

RESUMEN

Gastrointestinal cancer (GIC) remains a leading cause of morbidity and mortality worldwide. Unfortunately, these cancers are diagnosed in advanced metastatic stages due to lack of reliable biomarkers that are sufficiently specific and sensitive in early disease. There has been growing evidence that circulating exosomes can be used to diagnose cancer non-invasively with limited risks and side effects. Furthermore, exosomal long non-coding RNAs (lncRNAs) are emerging as a new class of promising biomarkers in cancer. This review provides an overview of the extraction and detection of exosomal lncRNAs with a focus on their potential role in GIC.


Asunto(s)
Exosomas , Neoplasias Gastrointestinales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/genética , Biomarcadores de Tumor/genética , Exosomas/genética , Regulación Neoplásica de la Expresión Génica
18.
Biotechnol Appl Biochem ; 70(3): 1044-1056, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36445196

RESUMEN

The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Enfermedades Neurodegenerativas , Humanos , MicroARNs/genética , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Técnicas Electroquímicas , Biomarcadores
19.
Biotechnol Appl Biochem ; 70(1): 318-329, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35484728

RESUMEN

Testosterone is an anabolic steroid and a major sex hormone in males. It plays vital roles, including developing the testis, penis, and prostate, increasing muscle and bone, and sperm production. In both men and women, testosterone levels should be in normal ranges. Besides, testosterone and its analogs are major global contributors to doping in sport. Due to the importance of testosterone testing, novel, accurate biosensors have been developed. This review summarizes the various methods for testosterone measurement. Also, recent optical and electrochemical approaches for the detection of testosterone and its analogs have been discussed.


Asunto(s)
Técnicas Biosensibles , Semen , Humanos , Masculino , Femenino , Testosterona
20.
Clin Chim Acta ; 551: 117618, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375624

RESUMEN

The term "gynecologic cancer" pertains to neoplasms impacting the reproductive tissues and organs of women encompassing the endometrium, vagina, cervix, uterus, vulva, and ovaries. The progression of gynecologic cancer is linked to various molecular mechanisms. Historically, cancer research primarily focused on protein-coding genes. However, recent years have unveiled the involvement of non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs (LncRNAs), and circular RNAs, in modulating cellular functions within gynecological cancer. Substantial evidence suggests that ncRNAs may wield a dual role in gynecological cancer, acting as either oncogenic or tumor-suppressive agents. Numerous clinical trials are presently investigating the roles of ncRNAs as biomarkers and therapeutic agents. These endeavors may introduce a fresh perspective on the diagnosis and treatment of gynecological cancer. In this overview, we highlight some of the ncRNAs associated with gynecological cancers.


Asunto(s)
Ginecología , MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Femenino , ARN no Traducido/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...